IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124002052.html
   My bibliography  Save this article

Experimental study of the upstream bathymetry effects on a ducted twin vertical axis turbine

Author

Listed:
  • Moreau, Martin
  • Bloch, Noam
  • Germain, Grégory
  • Maurice, Guillaume

Abstract

Tidal turbines at sea are subject to complex flow conditions. Among that complexity, wide bathymetry obstacles can generate powerful coherent flow structures whose impact on horizontal axis tidal turbines was proved to be highly detrimental. Consequently, the present paper aims at studying the effects of such coherent flow structures on the response of another tidal turbine geometry, namely a bottom-mounted ducted twin vertical axis tidal turbine (2-VATT). We tested a 1/20 scale model of such a 2-VATT in Ifremer’s flume tank either with a flat bed or downstream of a wide bathymetry obstacle at a constant far upstream velocity and we measured the turbine response simultaneously with the flow velocity. These flow measurements make it possible to compute cross-correlations in order to analyse the influence of the velocity fluctuation on the turbine response. The results reveal a strong drop in the average power and loads coefficients of the 2-VATT combined with significantly larger fluctuation. The velocity deficit and the high level of turbulence in the obstacle wake is responsible for a 40% lower average power coefficient and more than 3 times higher standard deviation compared to the flat bed configuration. The loads standard deviations are multiplied by 2 for the drag and by 10 for the lift when the 2-VATT is downstream of the bathymetry obstacle. This behaviour strongly increases the risks of structural fatigue failure, but the turbine drifting or overturning risks under those conditions remain lower than with the flat bed. The power fluctuation increase appears to be mostly due to the flow shear in the obstacle wake whereas the load fluctuation is mostly due to the periodical passing of the coherent flow structures. Thus, a proper characterisation of the flow at each precise turbine locations prior deployment at sea is highly recommended to design their structure accordingly.

Suggested Citation

  • Moreau, Martin & Bloch, Noam & Germain, Grégory & Maurice, Guillaume, 2024. "Experimental study of the upstream bathymetry effects on a ducted twin vertical axis turbine," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002052
    DOI: 10.1016/j.renene.2024.120140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124002052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.