IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v21y2000i3p537-552.html
   My bibliography  Save this article

A modified method of estimating Ångström’s turbidity coefficient for solar radiation models

Author

Listed:
  • Malik, A.Q.

Abstract

The method by Pinazo et al. (Pinazo JM, Cañada J, Boscá JV. A new method to determine Ångström’s turbidity coefficient: its application for Valencia. Solar Energy 1995;54(4):219–226) to determine the Ångström turbidity coefficient is modified. Two new correlations are developed that link Pinazo’s method with model ‘C’ by Iqbal (Iqbal M. An introduction to solar radiation. New York: Academic Press, 1983), and are derived using measured horizontal visibility data. The modified model is used to compute Ångström turbidity coefficient for Brunei Darussalam using measured data on solar radiation for a period of 5 years (1990–1994). The data were collected from the Meteorological Department of Civil Aviation, Ministry of Communication, Brunei Darussalam. A comparison of the modified model is made with those by Pinazo and Iqbal. The preliminary calculations reveal that the modified model is capable of computing Ångström turbidity coefficient more accurately than that developed by Pinazo and it can be used to compute Ångström turbidity coefficient for any location irrespective of the climatological zones.

Suggested Citation

  • Malik, A.Q., 2000. "A modified method of estimating Ångström’s turbidity coefficient for solar radiation models," Renewable Energy, Elsevier, vol. 21(3), pages 537-552.
  • Handle: RePEc:eee:renene:v:21:y:2000:i:3:p:537-552
    DOI: 10.1016/S0960-1481(00)00080-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810000080X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(00)00080-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malik, A.Q. & Mufti, A. & Hiser, H.W. & Veziroglu, N.T. & Kazi, L., 1991. "Application of geostationary satellite data for determining solar radiations over Pakistan," Renewable Energy, Elsevier, vol. 1(3), pages 455-461.
    2. Malik, A.Q. & Mufti, A. & Hiser, H.W. & Veziroglu, N.T., 1998. "Solar mapping of Pakistan using visible images from geostationary satellites," Renewable Energy, Elsevier, vol. 13(1), pages 1-16.
    3. Malik, A.Q. & Asghar, M., 1997. "Estimation of atmospheric ozone for Association of South East Asian Nations (ASEAN) countries," Renewable Energy, Elsevier, vol. 12(2), pages 193-202.
    4. Cañada, J. & Pinazo, J.M. & Bosca, J.V., 1993. "Determination of Angstrom's turbidity coefficient at Valencia," Renewable Energy, Elsevier, vol. 3(6), pages 621-626.
    5. Malik, A.Q. & Tamam, Sufian Hj, 1995. "Estimation of monthly average daily diffuse radiation for Brunei Darussalam," Renewable Energy, Elsevier, vol. 6(4), pages 425-427.
    6. Jacovides, C.P. & Varotsos, C. & Kaltsounides, N.A. & Petrakis, M. & Lalas, D.P., 1994. "Atmospheric turbidity parameters in the highly polluted site of Athens basin," Renewable Energy, Elsevier, vol. 4(5), pages 465-470.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Aiwen & Zou, Ling & Wang, Lunche & Gong, Wei & Zhu, Hongji & Salazar, Germán Ariel, 2016. "Estimation of atmospheric turbidity coefficient β over Zhengzhou, China during 1961–2013 using an improved hybrid model," Renewable Energy, Elsevier, vol. 86(C), pages 1134-1144.
    2. Malik, A.Q. & Damit, Salmi Jan Bin Haji, 2003. "Outdoor testing of single crystal silicon solar cells," Renewable Energy, Elsevier, vol. 28(9), pages 1433-1445.
    3. Wang, Lunche & Salazar, Germán Ariel & Gong, Wei & Peng, Simao & Zou, Ling & Lin, Aiwen, 2015. "An improved method for estimating the Ångström turbidity coefficient β in Central China during 1961–2010," Energy, Elsevier, vol. 81(C), pages 67-73.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahir, Z.R. & Asim, Muhammad, 2018. "Surface measured solar radiation data and solar energy resource assessment of Pakistan: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2839-2861.
    2. Ramachandra, T.V. & Jain, Rishabh & Krishnadas, Gautham, 2011. "Hotspots of solar potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3178-3186, August.
    3. Malik, A.Q. & Mufti, A. & Hiser, H.W. & Veziroglu, N.T., 1998. "Solar mapping of Pakistan using visible images from geostationary satellites," Renewable Energy, Elsevier, vol. 13(1), pages 1-16.
    4. Khalil, Samy A. & Shaffie, A.M., 2016. "Attenuation of the solar energy by aerosol particles: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 363-375.
    5. Madkour, M.A. & El-Metwally, M. & Hamed, A.B., 2006. "Comparative study on different models for estimation of direct normal irradiance (DNI) over Egypt atmosphere," Renewable Energy, Elsevier, vol. 31(3), pages 361-382.
    6. Pattarapanitchai, S. & Janjai, S. & Tohsing, K. & Prathumsit, J., 2015. "A technique to map monthly average global illuminance from satellite data in the tropics using a simple semi-empirical model," Renewable Energy, Elsevier, vol. 74(C), pages 170-175.
    7. Ertekin, Can & Yaldız, Osman, 1999. "Estimation of monthly average daily global radiation on horizontal surface for Antalya (Turkey)," Renewable Energy, Elsevier, vol. 17(1), pages 95-102.
    8. Jacovides, C.P. & Boland, J. & Asimakopoulos, D.N. & Kaltsounides, N.A., 2010. "Comparing diffuse radiation models with one predictor for partitioning incident PAR radiation into its diffuse component in the eastern Mediterranean basin," Renewable Energy, Elsevier, vol. 35(8), pages 1820-1827.
    9. Karapantsios, T.D & Hatzimoisiadis, K.A & Balouktsis, A.I, 1999. "Estimation of total atmospheric pollution using global radiation data: introduction of a novel clear day selection methodology," Renewable Energy, Elsevier, vol. 17(2), pages 169-181.
    10. Sheikh, Munawar A., 2009. "Renewable energy resource potential in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2696-2702, December.
    11. Janjai, S. & Pankaew, P. & Laksanaboonsong, J. & Kitichantaropas, P., 2011. "Estimation of solar radiation over Cambodia from long-term satellite data," Renewable Energy, Elsevier, vol. 36(4), pages 1214-1220.
    12. Aitor Marzo & Jesús Ballestrín & Joaquín Alonso-Montesinos & Pablo Ferrada & Jesús Polo & Gabriel López & Javier Barbero, 2021. "Field Quality Control of Spectral Solar Irradiance Measurements by Comparison with Broadband Measurements," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    13. Cañada, J. & Pinazo, J.M. & Boscá, J.V. & Ruiz, V. & Iglesias, P., 1994. "The diffuse fraction of daily global radiation," Renewable Energy, Elsevier, vol. 4(1), pages 89-94.
    14. Djafer, D. & Irbah, A. & Zaiani, M., 2017. "Identification of clear days from solar irradiance observations using a new method based on the wavelet transform," Renewable Energy, Elsevier, vol. 101(C), pages 347-355.
    15. Amit Kumar & Arvind Chandra Pandey & Swati Pandey & P. K. Srivastava, 2021. "Evaluating long-term variability in precipitation and temperature in eastern plateau region, India, and its impact on urban environment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3731-3761, March.
    16. Tadros, M.T.Y. & El-Metwally, M. & Hamed, A.B., 2002. "Determination of Ångström coefficients from spectral aerosol optical depth at two sites in Egypt," Renewable Energy, Elsevier, vol. 27(4), pages 621-645.
    17. Sabziparvar, Ali A., 2008. "A simple formula for estimating global solar radiation in central arid deserts of Iran," Renewable Energy, Elsevier, vol. 33(5), pages 1002-1010.
    18. Malik, A.Q., 2011. "Assessment of the potential of renewables for Brunei Darussalam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 427-437, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:21:y:2000:i:3:p:537-552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.