IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v213y2023icp63-74.html
   My bibliography  Save this article

Crust-mantle differentiation and thermal accumulation mechanisms in the north China plain

Author

Listed:
  • Wang, Guiling
  • Liu, Yanguang
  • Duan, Hexiao
  • Liu, Zhiyan
  • Hu, Jing
  • Bian, Kai
  • Xing, Linxiao

Abstract

The North China Plain, which is the central part of the lithospheric thinning in the North China Craton, is rich in clean geothermal energy. However, a current lack of understanding about the thermal accumulation mechanisms of the deep geothermal resources in this area is hindering the exploration, exploitation, and utilization of these resources and the achievement of the carbon reduction targets. Based on deep drilling and the tests of thermal property parameters at different depths, this study calculated the terrestrial heat flow and the heat flux at different depths of the lithosphere in the North China Plain and revealed the lithosphere thermal structure characteristics and the thermal accumulation mechanisms in the plain, obtaining the following results. The North China Plain has widely varying terrestrial heat flow of 33.5–92.1 mW/m2 (average: 62.1 ± 17.04 mW/m2). The average mantle heat flow and crustal heat flow in the plain are 42.05 ± 13.90 mW/m2 and 20 mW/m2, respectively, which account for approximately 67% and 33% of the total surface heat flow in the plain, respectively. This plain has a greatly varying Moho depth of 30–40 km and a Moho temperature of 420–920 °C mostly. The thermal lithosphere in the North China Plain has a thickness of 80–100 km and a thermal structure of the cold crust and hot mantle type. It has thinned on a large scale due to the extensional process, and the mantle-derived materials have migrated upward along the weak structural plane (e.g., deep faults) after pressure release and remelting. The resultant high mantle heat flow serves as a stable heat source for the formation of layered medium-low temperature geothermal fields.

Suggested Citation

  • Wang, Guiling & Liu, Yanguang & Duan, Hexiao & Liu, Zhiyan & Hu, Jing & Bian, Kai & Xing, Linxiao, 2023. "Crust-mantle differentiation and thermal accumulation mechanisms in the north China plain," Renewable Energy, Elsevier, vol. 213(C), pages 63-74.
  • Handle: RePEc:eee:renene:v:213:y:2023:i:c:p:63-74
    DOI: 10.1016/j.renene.2023.05.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123007668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akdas, Satuk Bugra & Onur, Mustafa, 2022. "Analytical solutions for predicting and optimizing geothermal energy extraction from an enhanced geothermal system with a multiple hydraulically fractured horizontal-well doublet," Renewable Energy, Elsevier, vol. 181(C), pages 567-580.
    2. Xiting Long & Keneng Zhang & Ruiqiang Yuan & Liang Zhang & Zhenling Liu, 2019. "Hydrogeochemical and Isotopic Constraints on the Pattern of a Deep Circulation Groundwater Flow System," Energies, MDPI, vol. 12(3), pages 1-18, January.
    3. Carlino, Stefano & Troiano, Antonio & Di Giuseppe, Maria Giulia & Tramelli, Anna & Troise, Claudia & Somma, Renato & De Natale, Giuseppe, 2016. "Exploitation of geothermal energy in active volcanic areas: A numerical modelling applied to high temperature Mofete geothermal field, at Campi Flegrei caldera (Southern Italy)," Renewable Energy, Elsevier, vol. 87(P1), pages 54-66.
    4. Baohua Zhang & Hongzhan Fei & Jianhua Ge & Lingsen Zeng & Qunke Xia, 2022. "Crustal melting in orogenic belts revealed by eclogite thermal properties," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bo & Guo, Tiankui & Qu, Zhanqing & Wang, Jiwei & Chen, Ming & Liu, Xiaoqiang, 2023. "Numerical simulation of fracture propagation and production performance in a fractured geothermal reservoir using a 2D FEM-based THMD coupling model," Energy, Elsevier, vol. 273(C).
    2. C, Alimonti & P, Conti & E, Soldo, 2019. "A comprehensive exergy evaluation of a deep borehole heat exchanger coupled with a ORC plant: the case study of Campi Flegrei," Energy, Elsevier, vol. 189(C).
    3. Marina Iorio & Alberto Carotenuto & Alfonso Corniello & Simona Di Fraia & Nicola Massarotti & Alessandro Mauro & Renato Somma & Laura Vanoli, 2020. "Low Enthalpy Geothermal Systems in Structural Controlled Areas: A Sustainability Analysis of Geothermal Resource for Heating Plant (The Mondragone Case in Southern Appennines, Italy)," Energies, MDPI, vol. 13(5), pages 1-26, March.
    4. Bujakowski, Wiesław & Tomaszewska, Barbara & Miecznik, Maciej, 2016. "The Podhale geothermal reservoir simulation for long-term sustainable production," Renewable Energy, Elsevier, vol. 99(C), pages 420-430.
    5. Angelo Algieri, 2018. "Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy)," Energies, MDPI, vol. 11(3), pages 1-17, March.
    6. Claudio Alimonti, 2023. "Technical Performance Comparison between U-Shaped and Deep Borehole Heat Exchangers," Energies, MDPI, vol. 16(3), pages 1-16, January.
    7. Wang, Jiacheng & Zhao, Zhihong & Liu, Guihong & Xu, Haoran, 2022. "A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm," Energy, Elsevier, vol. 254(PC).
    8. Zheng, Jun & Li, Peng & Dou, Bin & Fan, Tao & Tian, Hong & Lai, Xiaotian, 2022. "Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect," Energy, Elsevier, vol. 255(C).
    9. Jianchao Cai & Zhien Zhang & Qinjun Kang & Harpreet Singh, 2019. "Recent Advances in Flow and Transport Properties of Unconventional Reservoirs," Energies, MDPI, vol. 12(10), pages 1-5, May.
    10. Haiyang Jiang & Liangliang Guo & Fengxin Kang & Fugang Wang & Yanling Cao & Zhe Sun & Meng Shi, 2023. "Geothermal Characteristics and Productivity Potential of a Super-Thick Shallow Granite-Type Enhanced Geothermal System: A Case Study in Wendeng Geothermal Field, China," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    11. Francesca Ceglia & Adriano Macaluso & Elisa Marrasso & Maurizio Sasso & Laura Vanoli, 2020. "Modelling of Polymeric Shell and Tube Heat Exchangers for Low-Medium Temperature Geothermal Applications," Energies, MDPI, vol. 13(11), pages 1-26, May.
    12. Arciuolo, Thomas F. & Faezipour, Miad, 2022. "Yellowstone Caldera Volcanic Power Generation Facility: A new engineering approach for harvesting emission-free green volcanic energy on a national scale," Renewable Energy, Elsevier, vol. 198(C), pages 415-425.
    13. Ashok Bhansali & Namala Narasimhulu & Rocío Pérez de Prado & Parameshachari Bidare Divakarachari & Dayanand Lal Narayan, 2023. "A Review on Sustainable Energy Sources Using Machine Learning and Deep Learning Models," Energies, MDPI, vol. 16(17), pages 1-18, August.
    14. Muhammad Qarinur & Sho Ogata & Naoki Kinoshita & Hideaki Yasuhara, 2020. "Predictions of Rock Temperature Evolution at the Lahendong Geothermal Field by Coupled Numerical Model with Discrete Fracture Model Scheme," Energies, MDPI, vol. 13(12), pages 1-23, June.
    15. Li, Shengtao & Wen, Dongguang & Feng, Bo & Li, Fengyu & Yue, Dongdong & Zhang, Qiuxia & Wang, Junzhao & Feng, Zhaolong, 2023. "Numerical optimization of geothermal energy extraction from deep karst reservoir in North China," Renewable Energy, Elsevier, vol. 202(C), pages 1071-1085.
    16. Ciriaco, Anthony E. & Zarrouk, Sadiq J. & Zakeri, Golbon, 2020. "Geothermal resource and reserve assessment methodology: Overview, analysis and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Zongjun Gao & Mengjie Shi & Hongying Zhang & Jianguo Feng & Shaoyan Fang & Yechen Cui, 2020. "Formation and In Situ Treatment of High Fluoride Concentrations in Shallow Groundwater of a Semi-Arid Region: Jiaolai Basin, China," IJERPH, MDPI, vol. 17(21), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:213:y:2023:i:c:p:63-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.