IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v212y2023icp274-284.html
   My bibliography  Save this article

An energy router based on multi-hybrid energy storage system with energy coordinated management strategy in island operation mode

Author

Listed:
  • Deng, Jingchuan
  • Wang, Xinsheng
  • Chen, Tao
  • Meng, Fangang

Abstract

With the high penetration of renewable energy, its intermittency and volatility also bring challenges to traditional power system such as maintaining reliable operation of system and improving the utilization of renewable energy. Under the background of Energy Internet (EI), energy router (ER) emerges as the times require. Aiming to improve the ability of support of energy storage units to DC buses and suppressing power shocks both inside and outside the ER, in this paper, an ER based on multi-hybrid energy storage system (MHESS) is proposed. As the principle of maximizing the utilization of renewable energy, a corresponding energy coordinated management strategy is proposed. Charging/discharging timespan optimization model is established to ensure MHESS as available as possible. The reference power of MHESS is allocated based on the proposed optimization model. Simulation analysis of different working conditions in 4 operation scenarios are carried out and the results show that the power oscillation on different buses of ER can be dampened within 0.1s and the bus voltages fluctuate within 2% while operation scenarios are switched, which verifies the feasibility and effectiveness of the proposed energy coordinated management strategy.

Suggested Citation

  • Deng, Jingchuan & Wang, Xinsheng & Chen, Tao & Meng, Fangang, 2023. "An energy router based on multi-hybrid energy storage system with energy coordinated management strategy in island operation mode," Renewable Energy, Elsevier, vol. 212(C), pages 274-284.
  • Handle: RePEc:eee:renene:v:212:y:2023:i:c:p:274-284
    DOI: 10.1016/j.renene.2023.05.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123006420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yingshu Liu & Yue Fang & Jun Li, 2017. "Interconnecting Microgrids via the Energy Router with Smart Energy Management," Energies, MDPI, vol. 10(9), pages 1-19, August.
    2. Shumei Chi & Zhipeng Lv & Lan Liu & Yang Shan, 2021. "Free Switching Control Strategy for Multi-Operation Modes of Multi-Port Energy Router in Distribution Area," Energies, MDPI, vol. 14(23), pages 1-24, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gayo-Abeleira, Miguel & Santos, Carlos & Javier Rodríguez Sánchez, Francisco & Martín, Pedro & Antonio Jiménez, José & Santiso, Enrique, 2022. "Aperiodic two-layer energy management system for community microgrids based on blockchain strategy," Applied Energy, Elsevier, vol. 324(C).
    2. Mahdieh Najafzadeh & Natalia Strzelecka & Oleksandr Husev & Indrek Roasto & Kawsar Nassereddine & Dmitri Vinnikov & Ryszard Strzelecki, 2022. "Grid-Forming Operation of Energy-Router Based on Model Predictive Control with Improved Dynamic Performance," Energies, MDPI, vol. 15(11), pages 1-14, May.
    3. Haochen Hua & Yuchao Qin & Jianye Geng & Chuantong Hao & Junwei Cao, 2019. "Robust Mixed H 2 / H ∞ Controller Design for Energy Routers in Energy Internet," Energies, MDPI, vol. 12(3), pages 1-16, January.
    4. Sergio Saponara & Lucian Mihet-Popa, 2019. "Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid," Energies, MDPI, vol. 12(4), pages 1-9, February.
    5. Temitayo O. Olowu & Aditya Sundararajan & Masood Moghaddami & Arif I. Sarwat, 2018. "Future Challenges and Mitigation Methods for High Photovoltaic Penetration: A Survey," Energies, MDPI, vol. 11(7), pages 1-32, July.
    6. Paweł Dworak & Andrzej Mrozik & Agata Korzelecka-Orkisz & Adam Tański & Krzysztof Formicki, 2023. "Energy Self-Sufficiency of a Salmonids Breeding Facility in the Recirculating Aquaculture System," Energies, MDPI, vol. 16(6), pages 1-22, March.
    7. Tri-Hai Nguyen & Luong Vuong Nguyen & Jason J. Jung & Israel Edem Agbehadji & Samuel Ofori Frimpong & Richard C. Millham, 2020. "Bio-Inspired Approaches for Smart Energy Management: State of the Art and Challenges," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    8. Yingpei Liu & Yan Li & Haiping Liang & Jia He & Hanyang Cui, 2019. "Energy Routing Control Strategy for Integrated Microgrids Including Photovoltaic, Battery-Energy Storage and Electric Vehicles," Energies, MDPI, vol. 12(2), pages 1-16, January.
    9. Indrek Roasto & Oleksandr Husev & Mahdiyyeh Najafzadeh & Tanel Jalakas & Jose Rodriguez, 2019. "Voltage Source Operation of the Energy-Router Based on Model Predictive Control," Energies, MDPI, vol. 12(10), pages 1-15, May.
    10. Seongwoo Lee & Joonho Seon & Chanuk Kyeong & Soohyun Kim & Youngghyu Sun & Jinyoung Kim, 2021. "Novel Energy Trading System Based on Deep-Reinforcement Learning in Microgrids," Energies, MDPI, vol. 14(17), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:212:y:2023:i:c:p:274-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.