IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v19y2000i4p513-520.html
   My bibliography  Save this article

Novel, low cost CaCl2 based desiccants for solar crop drying applications

Author

Listed:
  • Thoruwa, T.F.N
  • Johnstone, C.M
  • Grant, A.D
  • Smith, J.E

Abstract

Drying with solar-heated air is satisfactory so long as the sun is shining. To continue this process through the night-time and periods of cloud cover, it is necessary to either store some of this energy in a thermal mass or incorporate desiccants within the drying system. This paper reports the results from studies undertaken to develop three low cost, solar regenerative clay–CaCl2 based solid desiccant materials; establish their moisture sorption and regeneration characteristics; assess their performance when compared with commercial desiccants; and integrate these within a low cost solar drying system for small-scale village-based crop drying. The moisture sorption and desorption performance of the desiccants were characterised in a Fison Environmental Cabinet at conditions of 85% (RH) and 25°C for 120 h for moisture sorption and 50°C and 20% (RH) for 8 h for regeneration. These conditions were representative of the environmental conditions monitored in the solar drying system. The bentonite–CaCl2 (type 1) desiccant gave a maximum moisture sorption of 45% dry weight basis (dwb) while bentonite–CaCl2 (type 2) and kaolinite–CaCl2 (type 3) solid desiccants each gave moisture sorption values of 30% (dwb). It was concluded from the moisture sorption and regeneration characteristics that their application in solar crop drying and air dehumidification is highly useful due to their low regeneration temperatures, sub 100°C.

Suggested Citation

  • Thoruwa, T.F.N & Johnstone, C.M & Grant, A.D & Smith, J.E, 2000. "Novel, low cost CaCl2 based desiccants for solar crop drying applications," Renewable Energy, Elsevier, vol. 19(4), pages 513-520.
  • Handle: RePEc:eee:renene:v:19:y:2000:i:4:p:513-520
    DOI: 10.1016/S0960-1481(99)00072-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148199000725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(99)00072-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thoruwa, T.F.N. & Smith, J.E. & Grant, A.D. & Johnstone, C.M., 1996. "Developments in solar drying using forced ventilation and solar regenerated desiccant materials," Renewable Energy, Elsevier, vol. 9(1), pages 686-689.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sultan, Muhammad & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2015. "An overview of solid desiccant dehumidification and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 16-29.
    2. Misha, S. & Mat, S. & Ruslan, M.H. & Sopian, K., 2012. "Review of solid/liquid desiccant in the drying applications and its regeneration methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4686-4707.
    3. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    4. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    5. Yu, Qiongfen & Zhao, Huirong & Sun, Shengnan & Zhao, Hong & Li, Guoliang & Li, Ming & Wang, Yunfeng, 2019. "Characterization of MgCl2/AC composite adsorbent and its water vapor adsorption for solar drying system application," Renewable Energy, Elsevier, vol. 138(C), pages 1087-1095.
    6. Rashidi, Milad & Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Kermani, Ali M., 2021. "Acceleration the drying process of oleaster (Elaeagnus angustifolia L.) using reflectors and desiccant system in a solar drying system," Renewable Energy, Elsevier, vol. 171(C), pages 526-541.
    7. Sun, Shengnan & Yu, Qiongfen & Li, Ming & Zhao, Hong & Wu, Chunxiang, 2019. "Preparation of coffee-shell activated carbon and its application for water vapor adsorption," Renewable Energy, Elsevier, vol. 142(C), pages 11-19.
    8. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    9. Dake, Rock Aymar & N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric & Lèye, Babacar & Ouédraogo, Igor W.K., 2021. "A review on the use of sorption materials in solar dryers," Renewable Energy, Elsevier, vol. 175(C), pages 965-979.
    10. La, D. & Dai, Y.J. & Li, Y. & Wang, R.Z. & Ge, T.S., 2010. "Technical development of rotary desiccant dehumidification and air conditioning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 130-147, January.
    11. Shanmugam, V. & Natarajan, E., 2006. "Experimental investigation of forced convection and desiccant integrated solar dryer," Renewable Energy, Elsevier, vol. 31(8), pages 1239-1251.
    12. N’Tsoukpoe, Kokouvi Edem & Yamegueu, Daniel & Bassole, Justin, 2014. "Solar sorption refrigeration in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 318-335.
    13. Zheng, X. & Ge, T.S. & Wang, R.Z., 2014. "Recent progress on desiccant materials for solid desiccant cooling systems," Energy, Elsevier, vol. 74(C), pages 280-294.
    14. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Antonellis, Stefano & Joppolo, Cesare Maria & Molinaroli, Luca & Pasini, Alberto, 2012. "Simulation and energy efficiency analysis of desiccant wheel systems for drying processes," Energy, Elsevier, vol. 37(1), pages 336-345.
    2. N’Tsoukpoe, Kokouvi Edem & Yamegueu, Daniel & Bassole, Justin, 2014. "Solar sorption refrigeration in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 318-335.
    3. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    4. Shanmugam, V. & Natarajan, E., 2006. "Experimental investigation of forced convection and desiccant integrated solar dryer," Renewable Energy, Elsevier, vol. 31(8), pages 1239-1251.
    5. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    6. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    7. Sultan, Muhammad & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2015. "An overview of solid desiccant dehumidification and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 16-29.
    8. Dake, Rock Aymar & N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric & Lèye, Babacar & Ouédraogo, Igor W.K., 2021. "A review on the use of sorption materials in solar dryers," Renewable Energy, Elsevier, vol. 175(C), pages 965-979.
    9. Rashidi, Milad & Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Kermani, Ali M., 2021. "Acceleration the drying process of oleaster (Elaeagnus angustifolia L.) using reflectors and desiccant system in a solar drying system," Renewable Energy, Elsevier, vol. 171(C), pages 526-541.
    10. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:19:y:2000:i:4:p:513-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.