IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp914-924.html
   My bibliography  Save this article

A novel concept for managing thermal interference between geothermal systems in cities

Author

Listed:
  • Attard, Guillaume
  • Bayer, Peter
  • Rossier, Yvan
  • Blum, Philipp
  • Eisenlohr, Laurent

Abstract

The growing interest in shallow geothermal resources leads to dense installation areas, where interference and decrease in efficiency might occur. To optimize geothermal use in cities which prevents interference between neighbouring and future installations, we present a novel concept relying on the definition of thermal protection perimeters (TPP) around geothermal installations. These perimeters are determined by quantifying the thermal probability of capture around closed- and open-loop geothermal systems. Then, the maximal acceptable power that can be exploited in the vicinity of the installations can be continuously mapped. Existing analytical heat transport models are adapted to calculate these thermal capture probabilities. Two applications are illustrated in Lyon (France). The first application shows that adapted analytical models can help to manage multiple geothermal installations already in place in sectors of few square kilometres. In the second application, a numerical deterministic model is used to determine the TPP of one open-loop system at a local scale. The numerical approach applied for this case allows to account for flow disturbances caused by underground constructions, and thus offers a refined representativeness of the probability of capture. The presented methodology facilitates compatibility assessments between existing and planned new geothermal installations, which is otherwise not feasible by only mapping thermal plumes caused by existing installations, as done in common practice.

Suggested Citation

  • Attard, Guillaume & Bayer, Peter & Rossier, Yvan & Blum, Philipp & Eisenlohr, Laurent, 2020. "A novel concept for managing thermal interference between geothermal systems in cities," Renewable Energy, Elsevier, vol. 145(C), pages 914-924.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:914-924
    DOI: 10.1016/j.renene.2019.06.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119309346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cassina, Lisa & Laloui, Lyesse & Rotta Loria, Alessandro F., 2022. "Thermal interactions among vertical geothermal borehole fields," Renewable Energy, Elsevier, vol. 194(C), pages 1204-1220.
    2. Alejandro García-Gil & Miguel Mejías Moreno & Eduardo Garrido Schneider & Miguel Ángel Marazuela & Corinna Abesser & Jesús Mateo Lázaro & José Ángel Sánchez Navarro, 2020. "Nested Shallow Geothermal Systems," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    3. Walch, Alina & Mohajeri, Nahid & Gudmundsson, Agust & Scartezzini, Jean-Louis, 2021. "Quantifying the technical geothermal potential from shallow borehole heat exchangers at regional scale," Renewable Energy, Elsevier, vol. 165(P1), pages 369-380.
    4. Walch, Alina & Li, Xiang & Chambers, Jonathan & Mohajeri, Nahid & Yilmaz, Selin & Patel, Martin & Scartezzini, Jean-Louis, 2022. "Shallow geothermal energy potential for heating and cooling of buildings with regeneration under climate change scenarios," Energy, Elsevier, vol. 244(PB).
    5. Serianz, Luka & Rman, Nina & Golobič, Iztok & Brenčič, Mihael, 2022. "Groundwater heat transfer and thermal outflow plume modelling in the Alps," Renewable Energy, Elsevier, vol. 182(C), pages 751-763.
    6. Simona Adrinek & Mitja Janža & Mihael Brenčič, 2023. "Impact of Open-Loop Systems on Groundwater Temperature in NE Slovenia," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    7. Zhang, Tiansheng & Liu, Chun & Bayer, Peter & Zhang, Liwei & Gong, Xulong & Gu, Kai & Shi, Bin, 2022. "City-wide monitoring and contributing factors to shallow subsurface temperature variability in Nanjing, China," Renewable Energy, Elsevier, vol. 199(C), pages 1105-1115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:914-924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.