IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp772-782.html
   My bibliography  Save this article

Reducing the impact of wind farms on the electric power system by the use of energy storage

Author

Listed:
  • Simla, Tomasz
  • Stanek, Wojciech

Abstract

The deployment of wind power is rapidly growing worldwide. Intermittent, unpredictable availability of wind energy destabilizes the work of the whole power system, which causes additional consumption of resources. When fossil fuel power plants are affected by this phenomenon, they are forced to cycle (change their load) more often, which results in higher consumption of fuel. This negative effect, expressed by means of thermo-ecological cost (TEC) can be significant in comparison to the TEC of construction phase of wind turbines. TEC is defined as the cumulative consumption of non-renewable exergy connected with the fabrication of a particular product. Power plant cycling could be minimized by applying an energy storage system responding to variations in wind power availability. In the present work, several scheduling strategies for cooperation of an energy storage system with wind turbines are investigated. The effect is assessed in local and global balance boundaries. Employing energy storage reduces the energy losses in thermal power plants, but at the same time, energy losses appear in the storage itself. However, depending on the strategy of energy storage scheduling, in some cases the overall consumption of primary exergy in the whole system may be lower.

Suggested Citation

  • Simla, Tomasz & Stanek, Wojciech, 2020. "Reducing the impact of wind farms on the electric power system by the use of energy storage," Renewable Energy, Elsevier, vol. 145(C), pages 772-782.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:772-782
    DOI: 10.1016/j.renene.2019.06.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119308493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Mingtao & Huang, Huijun & Song, Xiaoling & Peña-Mora, Feniosky & Zhang, Zhe & Chen, Jie, 2022. "Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach," Applied Energy, Elsevier, vol. 307(C).
    2. Tadeusz Mączka & Halina Pawlak-Kruczek & Lukasz Niedzwiecki & Edward Ziaja & Artur Chorążyczewski, 2020. "Plasma Assisted Combustion as a Cost-Effective Way for Balancing of Intermittent Sources: Techno-Economic Assessment for 200 MW el Power Unit," Energies, MDPI, vol. 13(19), pages 1-16, September.
    3. Urbanowska, Agnieszka & Niedzwiecki, Lukasz & Wnukowski, Mateusz & Aragon-Briceño, Christian & Kabsch-Korbutowicz, Małgorzata & Baranowski, Marcin & Czerep, Michał & Seruga, Przemysław & Pawlak-Krucze, 2023. "Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent," Energy, Elsevier, vol. 284(C).
    4. Ramin Sakipour & Hamdi Abdi, 2020. "Optimizing Battery Energy Storage System Data in the Presence of Wind Power Plants: A Comparative Study on Evolutionary Algorithms," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    5. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
    6. Nissim Amar & Aaron Shmaryahu & Michael Coletti & Ilan Aharon, 2021. "Sizing Procedure for System Hybridization Based on Experimental Source Modeling in Grid Application," Energies, MDPI, vol. 14(15), pages 1-19, August.
    7. Oh, Eunsung & Son, Sung-Yong, 2020. "Theoretical energy storage system sizing method and performance analysis for wind power forecast uncertainty management," Renewable Energy, Elsevier, vol. 155(C), pages 1060-1069.
    8. Gang Zhang & Yaning Zhu & Tuo Xie & Kaoshe Zhang & Xin He, 2022. "Wind Power Consumption Model Based on the Connection between Mid- and Long-Term Monthly Bidding Power Decomposition and Short-Term Wind-Thermal Power Joint Dispatch," Energies, MDPI, vol. 15(19), pages 1-25, September.
    9. Zeinalnezhad, Masoomeh & Chofreh, Abdoulmohammad Gholamzadeh & Goni, Feybi Ariani & Hashemi, Leila Sadat & Klemeš, Jiří Jaromír, 2021. "A hybrid risk analysis model for wind farms using Coloured Petri Nets and interpretive structural modelling," Energy, Elsevier, vol. 229(C).
    10. Stanek, Wojciech, 2022. "Thermo-Ecological Cost (TEC) –comparison of energy-ecological efficiency of renewable and non-renewable energy technologies," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:772-782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.