IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp1748-1760.html
   My bibliography  Save this article

Thermo-ecological cost analysis of cogeneration and polygeneration energy systems - Case study for thermal conversion of biomass

Author

Listed:
  • Gładysz, Paweł
  • Saari, Jussi
  • Czarnowska, Lucyna

Abstract

The aim of the paper is the thermo-ecological cost analysis of cogeneration and polygeneration energy systems. Within the paper biomass-fired CHP plants and their integration with thermal conversion of biomass units are investigated. In order to estimate the environmental effects of integration, the allocation of the thermo-ecological cost between different products is required. Some of the allocation methods have their origins in economic cost allocation, others in energy, emission or exergy analysis. Within this paper four different methods are investigated: avoided production in national energy system, avoided production in single-product processes, and physical and exergetic allocation. When applied to cogeneration technology, the avoided production in national energy system can give misleading results, mainly due to the nature of the thermo-ecological cost. In polygeneration energy systems, the avoided production in separate processes method can also lead to wrong conclusions due to the assumptions concerning reference efficiencies. At the end, the exergetic allocation method is proposed as a suitable way to allocate the thermo-ecological cost in cogeneration and polygeneration energy systems. Additionally, positive environmental effects of integration can be observed.

Suggested Citation

  • Gładysz, Paweł & Saari, Jussi & Czarnowska, Lucyna, 2020. "Thermo-ecological cost analysis of cogeneration and polygeneration energy systems - Case study for thermal conversion of biomass," Renewable Energy, Elsevier, vol. 145(C), pages 1748-1760.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1748-1760
    DOI: 10.1016/j.renene.2019.06.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119309279
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jussi Saari & Petteri Peltola & Tero Tynjälä & Timo Hyppänen & Juha Kaikko & Esa Vakkilainen, 2020. "High-Efficiency Bioenergy Carbon Capture Integrating Chemical Looping Combustion with Oxygen Uncoupling and a Large Cogeneration Plant," Energies, MDPI, vol. 13(12), pages 1-21, June.
    2. Mauro Tagliaferri & Paweł Gładysz & Pietro Ungar & Magdalena Strojny & Lorenzo Talluri & Daniele Fiaschi & Giampaolo Manfrida & Trond Andresen & Anna Sowiżdżał, 2022. "Techno-Economic Assessment of the Supercritical Carbon Dioxide Enhanced Geothermal Systems," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    3. Chen, Yuzhu & Xu, Jinzhao & Zhao, Dandan & Wang, Jun & Lund, Peter D., 2021. "Exergo-economic assessment and sensitivity analysis of a solar-driven combined cooling, heating and power system with organic Rankine cycle and absorption heat pump," Energy, Elsevier, vol. 230(C).
    4. Paweł Gładysz & Magdalena Strojny & Łukasz Bartela & Maciej Hacaga & Thomas Froehlich, 2022. "Merging Climate Action with Energy Security through CCS—A Multi-Disciplinary Framework for Assessment," Energies, MDPI, vol. 16(1), pages 1-28, December.
    5. Canpolat Tosun, Demet & Açıkkalp, Emin & Altuntas, Onder & Hepbasli, Arif & Palmero-Marrero, Ana I. & Borge-Diez, David, 2023. "Dynamic performance and sustainability assessment of a PV driven Carnot battery," Energy, Elsevier, vol. 278(C).
    6. Chaudhary Awais Salman & Ch Bilal Omer, 2020. "Process Modelling and Simulation of Waste Gasification-Based Flexible Polygeneration Facilities for Power, Heat and Biofuels Production," Energies, MDPI, vol. 13(16), pages 1-22, August.
    7. Peltola, Petteri & Saari, Jussi & Tynjälä, Tero & Hyppänen, Timo, 2020. "Process integration of chemical looping combustion with oxygen uncoupling in a biomass-fired combined heat and power plant," Energy, Elsevier, vol. 210(C).
    8. Arkadiusz Piwowar & Maciej Dzikuć, 2019. "Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review," Energies, MDPI, vol. 12(18), pages 1-15, September.
    9. Guo, Jian-Xin & Tan, Xianchun & Gu, Baihe & Zhu, Kaiwei, 2022. "Integration of supply chain management of hybrid biomass power plant with carbon capture and storage operation," Renewable Energy, Elsevier, vol. 190(C), pages 1055-1065.
    10. Marques, Adriano S. & Carvalho, Monica & Ochoa, Alvaro A.V. & Abrahão, Raphael & Santos, Carlos A.C., 2021. "Life cycle assessment and comparative exergoenvironmental evaluation of a micro-trigeneration system," Energy, Elsevier, vol. 216(C).
    11. Pavel Atănăsoae, 2022. "Allocation of Joint Costs and Price Setting for Electricity and Heat Generated in Cogeneration," Energies, MDPI, vol. 16(1), pages 1-20, December.
    12. Paweł Gładysz & Anna Sowiżdżał & Maciej Miecznik & Maciej Hacaga & Leszek Pająk, 2020. "Techno-Economic Assessment of a Combined Heat and Power Plant Integrated with Carbon Dioxide Removal Technology: A Case Study for Central Poland," Energies, MDPI, vol. 13(11), pages 1-34, June.
    13. Ji, Ling & Liang, Xiaolin & Xie, Yulei & Huang, Guohe & Wang, Bing, 2021. "Optimal design and sensitivity analysis of the stand-alone hybrid energy system with PV and biomass-CHP for remote villages," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1748-1760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.