IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i6p619-626.html
   My bibliography  Save this article

Stochastic analysis of shock process and modeling of condition-based maintenance

Author

Listed:
  • van der Weide, J.A.M.
  • Pandey, M.D.

Abstract

The paper presents an analytical formulation for evaluating the maintenance cost of engineering systems that are damaged by shocks arriving randomly in time. The damage process is nonlinear in a sense that damage increments form an increasing sequence (i.e., accelerated damage) or a decreasing sequence (saturated damage) of random increments. Such processes are motivated from damage data collected from nuclear reactor components. To model the nonlinear nature of damage process, the paper proposes the use of non-homogeneous Poisson process for damage increments, which is in contrast with the common use of a renewal process for modeling the damage. The paper presents a conceptually clear and comprehensive derivation of formulas for computing the expected cost rate associated with a periodic inspection and preventive maintenance policy. Distinctions between the analysis of self-announced and latent failures are highlighted. The analytical model presented in this paper is quite generic and versatile, and it can be applied to optimize other types of maintenance policies.

Suggested Citation

  • van der Weide, J.A.M. & Pandey, M.D., 2011. "Stochastic analysis of shock process and modeling of condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 619-626.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:6:p:619-626
    DOI: 10.1016/j.ress.2010.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832010002681
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2010.12.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toshio Nakagawa, 2007. "Shock and Damage Models in Reliability Theory," Springer Series in Reliability Engineering, Springer, number 978-1-84628-442-7, January.
    2. van der Weide, J.A.M. & Pandey, M.D. & van Noortwijk, J.M., 2010. "Discounted cost model for condition-based maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 236-246.
    3. Hongzhou Wang & Hoang Pham, 2006. "Reliability and Optimal Maintenance," Springer Series in Reliability Engineering, Springer, number 978-1-84628-325-3, January.
    4. Toshio Nakagawa, 2005. "Maintenance Theory of Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-221-8, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ece Zeliha Demirci & Joachim Arts & Geert-Jan Van Houtum, 2022. "A restless bandit approach for capacitated condition based maintenance scheduling," DEM Discussion Paper Series 22-01, Department of Economics at the University of Luxembourg.
    2. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2013. "Optimal policies for cumulative damage models with maintenance last and first," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 50-59.
    3. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Bivariate preventive maintenance of systems with lifetimes dependent on a random shock process," European Journal of Operational Research, Elsevier, vol. 266(1), pages 122-134.
    4. Maxim Finkelstein & Gregory Levitin, 2020. "On missions’ quality of performance for systems with partially or completely observable degradation," Journal of Risk and Reliability, , vol. 234(5), pages 676-685, October.
    5. Maxim Finkelstein & Gregory Levitin, 2018. "Optimal mission duration for systems subject to shocks and internal failures," Journal of Risk and Reliability, , vol. 232(1), pages 82-91, February.
    6. Ji Hwan Cha & Maxim Finkelstein, 2019. "On some characteristics of quality for systems operating in a random environment," Journal of Risk and Reliability, , vol. 233(2), pages 257-267, April.
    7. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "On some properties of shock processes in a ‘natural’ scale," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 104-110.
    8. Ji Hwan Cha & Maxim Finkelstein, 2019. "Optimal preventive maintenance for systems having a continuous output and operating in a random environment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 327-350, July.
    9. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2017. "On preventive maintenance of systems with lifetimes dependent on a random shock process," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 90-97.
    10. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    11. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    12. Maxim Finkelstein & Gregory Levitin, 2018. "Optimal Mission Duration for Partially Repairable Systems Operating in a Random Environment," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 505-516, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2013. "Optimal policies for cumulative damage models with maintenance last and first," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 50-59.
    2. Xufeng Zhao & Toshio Nakagawa, 2016. "Over-time and over-level replacement policies with random working cycles," Annals of Operations Research, Springer, vol. 244(1), pages 103-116, September.
    3. Maxim Finkelstein & Gregory Levitin & Oleg A Stepanov, 2019. "On operation termination for degrading systems with two types of failures," Journal of Risk and Reliability, , vol. 233(3), pages 419-426, June.
    4. Shafiee, Mahmood & Finkelstein, Maxim, 2015. "An optimal age-based group maintenance policy for multi-unit degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 230-238.
    5. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    6. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    7. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    8. Ali, Sajid & Pievatolo, Antonio, 2018. "Time and magnitude monitoring based on the renewal reward process," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 97-107.
    9. Yang, David Y. & Frangopol, Dan M., 2019. "Life-cycle management of deteriorating civil infrastructure considering resilience to lifetime hazards: A general approach based on renewal-reward processes," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 197-212.
    10. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    11. Hyunju Lee & Ji Hwan Cha & Maxim Finkelstein, 2022. "A Preventive Replacement Policy for a System Subject to Bivariate Generalized Polya Failure Process," Mathematics, MDPI, vol. 10(11), pages 1-15, May.
    12. Wang, Guan Jun & Zhang, Yuan Lin, 2013. "Optimal repair–replacement policies for a system with two types of failures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 500-506.
    13. Finkelstein, Maxim & Cha, Ji Hwan & Bedford, Tim, 2023. "Optimal preventive maintenance strategy for populations of systems that generate outputs," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Hamidi, Maryam & Szidarovszky, Ferenc & Szidarovszky, Miklos, 2016. "New one cycle criteria for optimizing preventive replacement policies," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 42-48.
    15. Phalguni Nanda & Prajamitra Bhuyan & Anup Dewanji, 2022. "Optimal replacement policy under cumulative damage model and strength degradation with applications," Annals of Operations Research, Springer, vol. 315(2), pages 1345-1371, August.
    16. Ji Hwan Cha & Maxim Finkelstein, 2019. "Optimal preventive maintenance for systems having a continuous output and operating in a random environment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 327-350, July.
    17. Ji Hwan Cha & Maxim Finkelstein & Gregory Levitin, 2017. "Bivariate preventive maintenance for repairable systems subject to random shocks," Journal of Risk and Reliability, , vol. 231(6), pages 643-653, December.
    18. Pérez Ramírez, Pedro A. & Utne, Ingrid Bouwer, 2013. "Decision support for life extension of technical systems through virtual age modelling," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 55-69.
    19. Shafiee, Mahmood & Chukova, Stefanka, 2013. "Maintenance models in warranty: A literature review," European Journal of Operational Research, Elsevier, vol. 229(3), pages 561-572.
    20. Asadi, Majid, 2023. "On a parametric model for the mean number of system repairs with applications," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:6:p:619-626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.