IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v93y2008i4p627-638.html
   My bibliography  Save this article

Security risks and probabilistic risk assessment of glazing subject to explosive blast loading

Author

Listed:
  • Stewart, Mark G.
  • Netherton, Michael D.

Abstract

A probabilistic risk assessment (PRA) procedure is developed which can predict risks of explosive blast damage to built infrastructure. The present paper focuses on window glazing since this is a load-capacity system which, when subject to blast loading, has caused significant damage and injury to building occupants. Structural reliability techniques are used to derive fragility and blast reliability curves (BRCs) for annealed and toughened glazing subjected to explosive blast, for a variety of threat scenarios. The probabilistic analyses include the uncertainties associated with blast modelling, glazing response and glazing failure criteria. Damage risks are calculated for an individual window and for windows in the facade of a multi-storey commercial building. If threat probabilities can be estimated then the paper shows illustrative examples of how this information, when combined with risk-based decision-making criteria, can be used to optimise risk mitigation strategies.

Suggested Citation

  • Stewart, Mark G. & Netherton, Michael D., 2008. "Security risks and probabilistic risk assessment of glazing subject to explosive blast loading," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 627-638.
  • Handle: RePEc:eee:reensy:v:93:y:2008:i:4:p:627-638
    DOI: 10.1016/j.ress.2007.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183200700107X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2007.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uthpala Rathnayake & Denvid Lau & Cheuk Lun Chow, 2020. "Review on Energy and Fire Performance of Water Wall Systems as a Green Building Façade," Sustainability, MDPI, vol. 12(20), pages 1-27, October.
    2. Mark G. Stewart & John Mueller, 2013. "Terrorism Risks and Cost‐Benefit Analysis of Aviation Security," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 893-908, May.
    3. Marks, Nicholas A & Stewart, Mark G. & Netherton, Michael D. & Stirling, Chris G., 2021. "Airblast variability and fatality risks from a VBIED in a complex urban environment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    4. Stewart, Mark G. & Netherton, Michael D., 2019. "A probabilistic risk-acceptance model for assessing blast and fragmentation safety hazards," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Stewart, Mark G., 2010. "Risk-informed decision support for assessing the costs and benefits of counter-terrorism protective measures for infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 3(1), pages 29-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:93:y:2008:i:4:p:627-638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.