IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v93y2008i11p1628-1649.html
   My bibliography  Save this article

An integrated methodology for the dynamic performance and reliability evaluation of fault-tolerant systems

Author

Listed:
  • Domínguez-García, Alejandro D.
  • Kassakian, John G.
  • Schindall, Joel E.
  • Zinchuk, Jeffrey J.

Abstract

We propose an integrated methodology for the reliability and dynamic performance analysis of fault-tolerant systems. This methodology uses a behavioral model of the system dynamics, similar to the ones used by control engineers to design the control system, but also incorporates artifacts to model the failure behavior of each component. These artifacts include component failure modes (and associated failure rates) and how those failure modes affect the dynamic behavior of the component. The methodology bases the system evaluation on the analysis of the dynamics of the different configurations the system can reach after component failures occur. For each of the possible system configurations, a performance evaluation of its dynamic behavior is carried out to check whether its properties, e.g., accuracy, overshoot, or settling time, which are called performance metrics, meet system requirements. Markov chains are used to model the stochastic process associated with the different configurations that a system can adopt when failures occur. This methodology not only enables an integrated framework for evaluating dynamic performance and reliability of fault-tolerant systems, but also enables a method for guiding the system design process, and further optimization. To illustrate the methodology, we present a case-study of a lateral-directional flight control system for a fighter aircraft.

Suggested Citation

  • Domínguez-García, Alejandro D. & Kassakian, John G. & Schindall, Joel E. & Zinchuk, Jeffrey J., 2008. "An integrated methodology for the dynamic performance and reliability evaluation of fault-tolerant systems," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1628-1649.
  • Handle: RePEc:eee:reensy:v:93:y:2008:i:11:p:1628-1649
    DOI: 10.1016/j.ress.2008.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008000355
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dominguez-Garcia, Alejandro D. & Kassakian, John G. & Schindall, Joel E., 2006. "Reliability evaluation of the power supply of an electrical power net for safety-relevant applications," Reliability Engineering and System Safety, Elsevier, vol. 91(5), pages 505-514.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Langeron, Y. & Grall, A. & Barros, A., 2015. "A modeling framework for deteriorating control system and predictive maintenance of actuators," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 22-36.
    2. Masoud Rabbani & Reza Yazdanparast & Mahdi Mobini, 2019. "An algorithm for performance evaluation of resilience engineering culture based on graph theory and matrix approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 228-241, April.
    3. Yang, Xiaole & Sam Mannan, M., 2010. "The development and application of dynamic operational risk assessment in oil/gas and chemical process industry," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 806-815.
    4. Raoni, Rafael & Secchi, Argimiro R., 2019. "Procedures to model and solve probabilistic dynamic system problems," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Dhople, S.V. & DeVille, L. & Domínguez-García, A.D., 2014. "A Stochastic Hybrid Systems framework for analysis of Markov reward models," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 158-170.
    7. Di Giandomenico, F. & Itria, M.L. & Masci, P. & Nostro, N., 2014. "Automated synthesis of dependable mediators for heterogeneous interoperable systems," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 220-232.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Cai Wen & Zhang, Tieling & Chen, Nan & Jin, Tongdan, 2013. "Reliability modeling and analysis for a novel design of modular converter system of wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 86-94.
    2. Marhavilas, P.K. & Koulouriotis, D.E., 2012. "A combined usage of stochastic and quantitative risk assessment methods in the worksites: Application on an electric power provider," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 36-46.
    3. Bas, Esra, 2011. "An investment plan for preventing child injuries using risk priority number of failure mode and effects analysis methodology and a multi-objective, multi-dimensional mixed 0-1 knapsack model," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 748-756.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:93:y:2008:i:11:p:1628-1649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.