IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v132y2014icp220-232.html
   My bibliography  Save this article

Automated synthesis of dependable mediators for heterogeneous interoperable systems

Author

Listed:
  • Di Giandomenico, F.
  • Itria, M.L.
  • Masci, P.
  • Nostro, N.

Abstract

Approaches to dependability and performance are challenged when systems are made up of networks of heterogeneous applications/devices, especially when operating in unpredictable open-world settings. The research community is tackling this problem and exploring means for enabling interoperability at the application level. The EU project Connect has developed a generic interoperability mechanism which relies on the on-the-fly synthesis of “Connectors†, that is software bridges that enable and adapt communication among heterogeneous devices. Dependability and Performance are relevant aspects of the system. In our previous work, we have identified generic dependability mechanisms for enhancing the dependability of Connectors. In this work, we introduce a set of generic strategies for automating the selection and application of an appropriate dependability mechanism. A case study based on a global monitoring system for environment and security (GMES) is used as a means for demonstrating the approach.

Suggested Citation

  • Di Giandomenico, F. & Itria, M.L. & Masci, P. & Nostro, N., 2014. "Automated synthesis of dependable mediators for heterogeneous interoperable systems," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 220-232.
  • Handle: RePEc:eee:reensy:v:132:y:2014:i:c:p:220-232
    DOI: 10.1016/j.ress.2014.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201400194X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghosh, Rahul & Kim, DongSeong & Trivedi, Kishor S., 2013. "System resiliency quantification using non-state-space and state-space analytic models," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 109-125.
    2. Domínguez-García, Alejandro D. & Kassakian, John G. & Schindall, Joel E. & Zinchuk, Jeffrey J., 2008. "An integrated methodology for the dynamic performance and reliability evaluation of fault-tolerant systems," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1628-1649.
    3. Flammini, Francesco & Marrone, Stefano & Mazzocca, Nicola & Vittorini, Valeria, 2009. "A new modeling approach to the safety evaluation of N-modular redundant computer systems in presence of imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(9), pages 1422-1432.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhople, S.V. & DeVille, L. & Domínguez-García, A.D., 2014. "A Stochastic Hybrid Systems framework for analysis of Markov reward models," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 158-170.
    2. Ding, Long & Wang, Hong & Jiang, Jin & Xu, Aidong, 2017. "SIL verification for SRS with diverse redundancy based on system degradation using reliability block diagram," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 170-187.
    3. Masoud Rabbani & Reza Yazdanparast & Mahdi Mobini, 2019. "An algorithm for performance evaluation of resilience engineering culture based on graph theory and matrix approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 228-241, April.
    4. Yang, Xiaole & Sam Mannan, M., 2010. "The development and application of dynamic operational risk assessment in oil/gas and chemical process industry," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 806-815.
    5. Å nipas, Mindaugas & Radziukynas, Virginijus & ValakeviÄ ius, Eimutis, 2018. "Numerical solution of reliability models described by stochastic automata networks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 570-578.
    6. Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Cai, Baoping & Liu, Yonghong & Liu, Zengkai & Tian, Xiaojie & Dong, Xin & Yu, Shilin, 2012. "Using Bayesian networks in reliability evaluation for subsea blowout preventer control system," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 32-41.
    8. Raoni, Rafael & Secchi, Argimiro R., 2019. "Procedures to model and solve probabilistic dynamic system problems," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Langeron, Y. & Grall, A. & Barros, A., 2015. "A modeling framework for deteriorating control system and predictive maintenance of actuators," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 22-36.
    10. Gandoman, Foad H. & Ahmadi, Abdollah & Bossche, Peter Van den & Van Mierlo, Joeri & Omar, Noshin & Nezhad, Ali Esmaeel & Mavalizadeh, Hani & Mayet, Clément, 2019. "Status and future perspectives of reliability assessment for electric vehicles," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 1-16.
    11. Chiacchio, F. & D’Urso, D. & Manno, G. & Compagno, L., 2016. "Stochastic hybrid automaton model of a multi-state system with aging: Reliability assessment and design consequences," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 1-13.
    12. Alebrant Mendes, Angélica & Coit, David W. & Duarte Ribeiro, José Luis, 2014. "Establishment of the optimal time interval between periodic inspections for redundant systems," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 148-165.
    13. Cai, Baoping & Liu, Yu & Fan, Qian, 2016. "A multiphase dynamic Bayesian networks methodology for the determination of safety integrity levels," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 105-115.
    14. Baoping Cai & Yonghong Liu & Zengkai Liu & Xiaojie Tian & Yanzhen Zhang & Renjie Ji, 2013. "Application of Bayesian Networks in Quantitative Risk Assessment of Subsea Blowout Preventer Operations," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1293-1311, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:132:y:2014:i:c:p:220-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.