IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v92y2007i6p697-706.html
   My bibliography  Save this article

Solving advanced multi-objective robust designs by means of multiple objective evolutionary algorithms (MOEA): A reliability application

Author

Listed:
  • Salazar A., Daniel E.
  • Rocco S., Claudio M.

Abstract

This paper extends the approach proposed by the second author in [Rocco et al. Robust design using a hybrid-cellular-evolutionary and interval-arithmetic approach: a reliability application. In: Tarantola S, Saltelli A, editors. SAMO 2001: Methodological advances and useful applications of sensitivity analysis. Reliab Eng Syst Saf 2003;79(2):149-59 [special issue]] to obtain a robust system design. The approach based on the use of evolutionary algorithms and interval arithmetic finds the maximum-volume inner box (MIB) or the maximal ranges of variation for each variable that preserve pre-specified design/performance requirements. The original single-objective formulation considers the definition of a MIB around a specified centroid (case 1), or around an unspecified centroid (case 2). In this paper, both cases were successfully modified and solved as multiple-objective (MO) problems, showing the advantages of MO formulations in a design-selection decision framework. Special attention is devoted to the unspecified centre MO problem where the computational efficiency could be a critical issue. In that sense, a new procedure based on the “percentage representation†is proposed. This approach reduces drastically the computational burden, extending the possibilities of use of robust design.

Suggested Citation

  • Salazar A., Daniel E. & Rocco S., Claudio M., 2007. "Solving advanced multi-objective robust designs by means of multiple objective evolutionary algorithms (MOEA): A reliability application," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 697-706.
  • Handle: RePEc:eee:reensy:v:92:y:2007:i:6:p:697-706
    DOI: 10.1016/j.ress.2006.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832006000706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2006.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hendrix, Eligius M. T. & Mecking, Carmen J. & Hendriks, Theo H. B., 1996. "Finding robust solutions for product design problems," European Journal of Operational Research, Elsevier, vol. 92(1), pages 28-36, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stuart M. Harwood & Paul I. Barton, 2017. "How to solve a design centering problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 215-254, August.
    2. Coelho, Leandro dos Santos, 2009. "An efficient particle swarm approach for mixed-integer programming in reliability–redundancy optimization applications," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 830-837.
    3. Roy, Bernard, 2010. "Robustness in operational research and decision aiding: A multi-faceted issue," European Journal of Operational Research, Elsevier, vol. 200(3), pages 629-638, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, J. & den Hertog, D., 2015. "Computing the Maximum Volume Inscribed Ellipsoid of a Polytopic Projection," Discussion Paper 2015-004, Tilburg University, Center for Economic Research.
    2. Jianzhe Zhen & Dick den Hertog, 2018. "Computing the Maximum Volume Inscribed Ellipsoid of a Polytopic Projection," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 31-42, February.
    3. Hendrix, Eligius M.T. & Casado, Leocadio G. & Garcí­a, Inmaculada, 2008. "The semi-continuous quadratic mixture design problem: Description and branch-and-bound approach," European Journal of Operational Research, Elsevier, vol. 191(3), pages 803-815, December.
    4. Stuart M. Harwood & Paul I. Barton, 2017. "How to solve a design centering problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 215-254, August.
    5. Blanquero, R. & Carrizosa, E. & Hendrix, E.M.T., 2011. "Locating a competitive facility in the plane with a robustness criterion," European Journal of Operational Research, Elsevier, vol. 215(1), pages 21-24, November.
    6. Juan Herrera & Leocadio Casado & Eligius Hendrix & Inmaculada García, 2014. "Pareto optimality and robustness in bi-blending problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 254-273, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:92:y:2007:i:6:p:697-706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.