IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v90y2005i2p140-147.html
   My bibliography  Save this article

A general Bayes weibull inference model for accelerated life testing

Author

Listed:
  • René Van Dorp, J.
  • Mazzuchi, Thomas A.

Abstract

This article presents the development of a general Bayes inference model for accelerated life testing. The failure times at a constant stress level are assumed to belong to a Weibull distribution, but the specification of strict adherence to a parametric time-transformation function is not required. Rather, prior information is used to indirectly define a multivariate prior distribution for the scale parameters at the various stress levels and the common shape parameter. Using the approach, Bayes point estimates as well as probability statements for use-stress (and accelerated) life parameters may be inferred from a host of testing scenarios. The inference procedure accommodates both the interval data sampling strategy and type I censored sampling strategy for the collection of ALT test data. The inference procedure uses the well-known MCMC (Markov Chain Monte Carlo) methods to derive posterior approximations. The approach is illustrated with an example.

Suggested Citation

  • René Van Dorp, J. & Mazzuchi, Thomas A., 2005. "A general Bayes weibull inference model for accelerated life testing," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 140-147.
  • Handle: RePEc:eee:reensy:v:90:y:2005:i:2:p:140-147
    DOI: 10.1016/j.ress.2004.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832004002650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2004.10.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, David & Bai, Tianyu, 2020. "Design optimization of a simple step-stress accelerated life test – Contrast between continuous and interval inspections with non-uniform step durations," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    2. Finkelstein, Maxim, 2013. "On dependent items in series in different environments," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 119-122.
    3. Maria Kateri & Udo Kamps, 2015. "Inference in step-stress models based on failure rates," Statistical Papers, Springer, vol. 56(3), pages 639-660, August.
    4. Qin, Shuidan & Wang, Bing Xing & Wu, Wenhui & Ma, Chao, 2022. "The prediction intervals of remaining useful life based on constant stress accelerated life test data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 747-755.
    5. Volf, P. & Timková, J., 2014. "On selection of optimal stochastic model for accelerated life testing," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 291-297.
    6. Moustafa, Kassem & Hu, Zhen & Mourelatos, Zissimos P. & Baseski, Igor & Majcher, Monica, 2021. "System reliability analysis using component-level and system-level accelerated life testing," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    7. Naijun Sha & Rong Pan, 2014. "Bayesian analysis for step-stress accelerated life testing using weibull proportional hazard model," Statistical Papers, Springer, vol. 55(3), pages 715-726, August.
    8. Quigley, John & Walls, Lesley, 2011. "Mixing Bayes and empirical Bayes inference to anticipate the realization of engineering concerns about variant system designs," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 933-941.
    9. Han, David, 2015. "Time and cost constrained optimal designs of constant-stress and step-stress accelerated life tests," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:90:y:2005:i:2:p:140-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.