A novel active learning stochastic Kriging metamodel for improving reliability and stability of additive manufacturing processes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2025.111043
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jalali, Hamed & Van Nieuwenhuyse, Inneke & Picheny, Victor, 2017. "Comparison of Kriging-based algorithms for simulation optimization with heterogeneous noise," European Journal of Operational Research, Elsevier, vol. 261(1), pages 279-301.
- Kleijnen, Jack P.C., 2017.
"Regression and Kriging metamodels with their experimental designs in simulation: A review,"
European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
- Kleijnen, J.P.C., 2015. "Regression and Kriging Metamodels with Their Experimental Designs in Simulation : Review," Other publications TiSEM c592e895-1656-43c3-8c7e-f, Tilburg University, School of Economics and Management.
- Kleijnen, J.P.C., 2015. "Regression and Kriging Metamodels with Their Experimental Designs in Simulation : Review," Discussion Paper 2015-035, Tilburg University, Center for Economic Research.
- Ouyang, Linhan & Che, Yushuai & Park, Chanseok & Chen, Yuejian, 2024. "A novel active learning Gaussian process modeling-based method for time-dependent reliability analysis considering mixed variables," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
- Bruce Ankenman & Barry L. Nelson & Jeremy Staum, 2010. "Stochastic Kriging for Simulation Metamodeling," Operations Research, INFORMS, vol. 58(2), pages 371-382, April.
- Huang, Shi-Ya & Zhang, Shao-He & Liu, Lei-Lei, 2022. "A new active learning Kriging metamodel for structural system reliability analysis with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
- Gramacy, Robert B & Lee, Herbert K. H, 2008. "Bayesian Treed Gaussian Process Models With an Application to Computer Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1119-1130.
- Zhang, Yu & Dong, You & Xu, Jun, 2023. "An accelerated active learning Kriging model with the distance-based subdomain and a new stopping criterion for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Linhan Ouyang & Mei Han & Yizhong Ma & Min Wang & Chanseok Park, 2023. "Simulation optimization using stochastic kriging with robust statistics," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 623-636, March.
- Young Myoung Ko & Eunshin Byon, 2022. "Optimal budget allocation for stochastic simulation with importance sampling: Exploration vs. replication," IISE Transactions, Taylor & Francis Journals, vol. 54(9), pages 881-893, June.
- Zebiao Feng & Jianjun Wang & Yizhong Ma & Yiliu Tu, 2021. "Robust parameter design based on Gaussian process with model uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 59(9), pages 2772-2788, May.
- Zhu, Xujia & Sudret, Bruno, 2021. "Global sensitivity analysis for stochastic simulators based on generalized lambda surrogate models," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Yuan, Jun & Ng, Szu Hui, 2013. "A sequential approach for stochastic computer model calibration and prediction," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 273-286.
- Chen, Xi & Zhou, Qiang, 2017. "Sequential design strategies for mean response surface metamodeling via stochastic kriging with adaptive exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 262(2), pages 575-585.
- Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Ning Quan & Jun Yin & Szu Ng & Loo Lee, 2013. "Simulation optimization via kriging: a sequential search using expected improvement with computing budget constraints," IISE Transactions, Taylor & Francis Journals, vol. 45(7), pages 763-780.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Davis, Casey B. & Hans, Christopher M. & Santner, Thomas J., 2021. "Prediction of non-stationary response functions using a Bayesian composite Gaussian process," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
- Giulia Pedrielli & K. Selcuk Candan & Xilun Chen & Logan Mathesen & Alireza Inanalouganji & Jie Xu & Chun-Hung Chen & Loo Hay Lee, 2019. "Generalized Ordinal Learning Framework (GOLF) for Decision Making with Future Simulated Data," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-35, December.
- Rojas Gonzalez, Sebastian & Jalali, Hamed & Van Nieuwenhuyse, Inneke, 2020. "A multiobjective stochastic simulation optimization algorithm," European Journal of Operational Research, Elsevier, vol. 284(1), pages 212-226.
- Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
- Rodriguez, Sergio & Ludkovski, Michael, 2020. "Probabilistic bisection with spatial metamodels," European Journal of Operational Research, Elsevier, vol. 286(2), pages 588-603.
- Zilong Wang & Marianthi Ierapetritou, 2018. "Surrogate-based feasibility analysis for black-box stochastic simulations with heteroscedastic noise," Journal of Global Optimization, Springer, vol. 71(4), pages 957-985, August.
- Pedrielli, Giulia & Wang, Songhao & Ng, Szu Hui, 2020. "An extended Two-Stage Sequential Optimization approach: Properties and performance," European Journal of Operational Research, Elsevier, vol. 287(3), pages 929-945.
- Cole, D. Austin & Gramacy, Robert B. & Ludkovski, Mike, 2022. "Large-scale local surrogate modeling of stochastic simulation experiments," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Qun Meng & Songhao Wang & Szu Hui Ng, 2022. "Combined Global and Local Search for Optimization with Gaussian Process Models," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 622-637, January.
- Mehdad, E. & Kleijnen, Jack P.C., 2014.
"Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging,"
Other publications TiSEM
8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
- Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Discussion Paper 2014-063, Tilburg University, Center for Economic Research.
- Kamiński, Bogumił, 2015. "A method for the updating of stochastic kriging metamodels," European Journal of Operational Research, Elsevier, vol. 247(3), pages 859-866.
- Rojas Gonzalez, Sebastian & Branke, Juergen & Van Nieuwenhuyse, Inneke, 2025. "Bi-objective ranking and selection using stochastic kriging," European Journal of Operational Research, Elsevier, vol. 322(2), pages 599-614.
- Chen, Chuqi & Li, Zheng & Li, Xiaoyu & Wang, Linna & Zeng, Wenjie, 2025. "A dynamic performance assessment of coordinated control system of small pressurized water reactor based on uncertainty quantification and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
- Chen, Xi & Zhou, Qiang, 2017. "Sequential design strategies for mean response surface metamodeling via stochastic kriging with adaptive exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 262(2), pages 575-585.
- Wate, P. & Iglesias, M. & Coors, V. & Robinson, D., 2020. "Framework for emulation and uncertainty quantification of a stochastic building performance simulator," Applied Energy, Elsevier, vol. 258(C).
- Wan, Liangqi & Wei, Yumeng & Zhang, Qiaoke & Liu, Lei & Chen, Yuejian, 2025. "A new multiple stochastic Kriging model for active learning surrogate-assisted reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
- Maia, Mateus & Murphy, Keefe & Parnell, Andrew C., 2024. "GP-BART: A novel Bayesian additive regression trees approach using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
- Pulong Ma & Georgios Karagiannis & Bledar A. Konomi & Taylor G. Asher & Gabriel R. Toro & Andrew T. Cox, 2022. "Multifidelity computer model emulation with high‐dimensional output: An application to storm surge," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 861-883, August.
- Bolin, David & Wallin, Jonas & Lindgren, Finn, 2019. "Latent Gaussian random field mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 80-93.
- Yuan, Kai & Sui, Xi & Zhang, Shijie & Xiao, Ning-cong & Hu, Jinghan, 2024. "AK-SYS-IE: A novel adaptive Kriging-based method for system reliability assessment combining information entropy," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
More about this item
Keywords
Active learning; Quality design; Stochastic Kriging; Variance reduction; Additive manufacturing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002443. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.