IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002406.html
   My bibliography  Save this article

An unsupervised framework for dynamic health indicator construction and its application in rolling bearing prognostics

Author

Listed:
  • Sun, Tongda
  • Yin, Chen
  • Zheng, Huailiang
  • Dong, Yining

Abstract

Health indicator (HI) plays a key role in degradation assessment and prognostics of rolling bearings. Although various HI construction methods have been investigated, most of them rely on expert knowledge for feature extraction and overlook capturing dynamic information hidden in sequential degradation processes, which limits the ability of the constructed HI for degradation trend representation and prognostics. To address these concerns, a novel dynamic HI that considers HI-level temporal dependence is constructed through an unsupervised framework. Specifically, a degradation feature learning module composed of a skip-connection-based autoencoder first maps raw signals to a representative degradation feature space (DFS) to automatically extract essential degradation features without the need for expert knowledge. Subsequently, in this DFS, a new HI-generating module embedded with an inner HI-prediction block is proposed for dynamic HI construction, where the temporal dependence between past and current HI states is guaranteed and modeled explicitly. On this basis, the dynamic HI captures the inherent dynamic contents of the degradation process, ensuring its effectiveness for degradation tendency modeling and future degradation prognostics. The experiment results on two bearing lifecycle datasets demonstrate that the proposed HI construction method outperforms comparison methods, and the constructed dynamic HI is superior for prognostic tasks.

Suggested Citation

  • Sun, Tongda & Yin, Chen & Zheng, Huailiang & Dong, Yining, 2025. "An unsupervised framework for dynamic health indicator construction and its application in rolling bearing prognostics," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002406
    DOI: 10.1016/j.ress.2025.111039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.