IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004204.html
   My bibliography  Save this article

Multi-task learning mixture density network for interval estimation of the remaining useful life of rolling element bearings

Author

Listed:
  • Wang, Xin
  • Li, Yongbo
  • Noman, Khandaker
  • Nandi, Asoke K.

Abstract

Existing remaining useful life (RUL) predictions of rolling element bearings have the following shortcomings. 1) Model-driven methods typically employ a sole model for processing the data of an individual, making it challenging to accommodate the variety of degradation behaviors and susceptible to abnormal interference. 2) Data-driven methods place greater emphasis on training data, and in reality, it can be challenging to acquire comprehensive data covering the lifecycle. 3) Many studies fail to give adequate attention to the assessment of RUL uncertainty. This paper proposes a multi-task learning mixture density network (MTL-MDN) method to address these issues. Firstly, the peak-of-Histogram (PoHG) is extracted and served as the novel health indicators. Secondly, multi-task learning dictionaries are constructed based on the evolution law of PoHG, thus combining both model-driven and data-driven strategies. Finally, a multi-task learning strategy is proposed with mixture density networks. It effectively accomplishes the collaborative learning objective of numerous degradation samples in the regression problem and accomplishes the uncertainty assessment of RUL. After analyzing the experimental and real-world degradation data of rolling element bearings throughout their lifecycle, and comparing it to other modern RUL prediction methods, it becomes evident that the proposed MTL-MDN method offers superior prediction accuracy and robustness.

Suggested Citation

  • Wang, Xin & Li, Yongbo & Noman, Khandaker & Nandi, Asoke K., 2024. "Multi-task learning mixture density network for interval estimation of the remaining useful life of rolling element bearings," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004204
    DOI: 10.1016/j.ress.2024.110348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Guofa & Wei, Jingfeng & He, Jialong & Yang, Haiji & Meng, Fanning, 2023. "Implicit Kalman filtering method for remaining useful life prediction of rolling bearing with adaptive detection of degradation stage transition point," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Liu, Jie & Hou, Bingchang & Lu, Ming & Wang, Dong, 2024. "Box-Cox transformation based state-space modeling as a unified prognostic framework for degradation linearization and RUL prediction enhancement," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    3. Zhang, Huixin & Xi, Xiaopeng & Pan, Rong, 2023. "A two-stage data-driven approach to remaining useful life prediction via long short-term memory networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Bai, Rui & Noman, Khandaker & Feng, Ke & Peng, Zhike & Li, Yongbo, 2023. "A two-phase-based deep neural network for simultaneous health monitoring and prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wenjie & Liu, Dongdong & Wang, Xin & Li, Yongbo & Cui, Lingli, 2025. "An integrated dual-scale similarity-based method for bearing remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Pengjie & Wang, Junliang & Shi, Ziqi & Ming, Weiwei & Chen, Ming, 2024. "Long-term temporal attention neural network with adaptive stage division for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Ren, Xiangyu & Qin, Yong & Li, Bin & Wang, Biao & Yi, Xiaojian & Jia, Limin, 2024. "A core space gradient projection-based continual learning framework for remaining useful life prediction of machinery under variable operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    3. Cuesta, Jokin & Leturiondo, Urko & Vidal, Yolanda & Pozo, Francesc, 2025. "A review of prognostics and health management techniques in wind energy," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    4. Zheng, Yu & Chen, Liang & Bao, Xiangyu & Zhao, Fei & Zhong, Jingshu & Wang, Chenhan, 2025. "Prediction model optimization of gas turbine remaining useful life based on transfer learning and simultaneous distillation pruning algorithm," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    5. Lian, Zheng & Zhou, Zhi-Jie & Hu, Chang-Hua & Wang, Jie & Zhang, Chun-Chao & Zhang, Chao-Li, 2024. "A health assessment method with attribute importance modeling for complex systems using belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Zhu, Ting & Chen, Zhen & Zhou, Di & Xia, Tangbin & Pan, Ershun, 2024. "Adaptive staged remaining useful life prediction of roller in a hot strip mill based on multi-scale LSTM with multi-head attention," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    7. Zhang, Jian-Xun & Zhang, Jia-Ling & Zhang, Zheng-Xin & Li, Tian-Mei & Si, Xiao-Sheng, 2024. "Remaining useful life prediction for stochastic degrading devices incorporating quantization," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    8. Liu, Shaoyang & Wei, Jingfeng & Li, Guofa & He, Jialong & Zhang, Baodong & Liu, Bo, 2025. "A two-stage remaining useful life prediction method based on adaptive feature metric and graph spatiotemporal attention rule learning," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    9. Wang, Wei & Song, Honghao & Si, Shubin & Lu, Wenhao & Cai, Zhiqiang, 2024. "Data augmentation based on diffusion probabilistic model for remaining useful life estimation of aero-engines," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    10. Xie, Bin & Wang, Yanzhong & Zhu, Yunyi & E, Shiyuan & Wu, Yu, 2025. "Vibration response-based time-variant reliability and sensitivity analysis of rolling bearings using the first-passage method," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    11. Xie, Bin & Wang, Yanzhong & Zhu, Yunyi & Liu, Peng & Wu, Yu & Lu, Fengxia, 2024. "Time-variant reliability analysis of angular contact ball bearing considering the coupled effect of rolling contact fatigue damage and wear," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Yang, Jing & Wang, Xiaomin, 2024. "Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    13. Wang, Chenyushu & Cai, Baoping & Shao, Xiaoyan & Zhao, Liqian & Sui, Zhongfei & Liu, Keyang & Khan, Javed Akbar & Gao, Lei, 2023. "Dynamic risk assessment methodology of operation process for deepwater oil and gas equipment," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    14. Liang, Tao & Wang, Fuli & Wang, Shu & Li, Kang & Mo, Xuelei & Lu, Di, 2024. "Machinery health prognostic with uncertainty for mineral processing using TSC-TimeGAN," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    15. Li, Naipeng & Wang, Mingyang & Lei, Yaguo & Yang, Bin & Li, Xiang & Si, Xiaosheng, 2025. "Remaining useful life prediction of lithium-ion battery with nonparametric degradation modeling and incomplete data," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    16. Jiang, Chen & Zhong, Teng & Choi, Hyunhee & Youn, Byeng D., 2025. "Physics-informed Gaussian process probabilistic modeling with multi-source data for prognostics of degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    17. Wang, Tao & Khoo, Shin Yee & Ong, Zhi Chao & Siow, Pei Yi & Wang, Teng, 2025. "Distance similarity entropy: A sensitive nonlinear feature extraction method for rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    18. Zhao, Hao & Pan, Rong, 2025. "Gaussian Derivative Change-point Detection for early warnings of industrial system failures," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    19. Kim, Sunghyun & Seo, Yun-Ho & Park, Junhong, 2024. "Transformer-based novel framework for remaining useful life prediction of lubricant in operational rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    20. Lin, Wenyi & Chai, Yi & Fan, Linchuan & Zhang, Ke, 2024. "Remaining useful life prediction using nonlinear multi-phase Wiener process and variational Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.