IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v235y2023ics0951832023001849.html
   My bibliography  Save this article

Implicit Kalman filtering method for remaining useful life prediction of rolling bearing with adaptive detection of degradation stage transition point

Author

Listed:
  • Li, Guofa
  • Wei, Jingfeng
  • He, Jialong
  • Yang, Haiji
  • Meng, Fanning

Abstract

Remaining useful life (RUL) prediction is a vital task in rolling bearing prognostics and health management (PHM) process. Kalman filtering (KF) is one of the hot spots in the research area of RUL prediction. However, three dispiriting shortcomings in KF methods are still unavoidable, including: (1) difficulty in tracking the unknown time-varying noise information, (2) the subjectivity for setting time to start prediction (TSP), and (3) short-term accuracy of the predicting results based on linear predictors. To improve the capability of KF methods, this work adopts the variational Bayesian technique to adaptively describe noise information and considers linear and nonlinear factors of multi-channel signals to recognize the degradation stage transition point of bearing as TSP. Moreover, this work proposes an implicit Kalman filtering method to predict the RUL. The effectiveness of the proposed method is validated on XJTU-SY and IMS-Rexnord bearing data. Results show that the proposed method can recognize the TSP and improve the long-term accuracy of the prediction result during the accelerated degradation stage.

Suggested Citation

  • Li, Guofa & Wei, Jingfeng & He, Jialong & Yang, Haiji & Meng, Fanning, 2023. "Implicit Kalman filtering method for remaining useful life prediction of rolling bearing with adaptive detection of degradation stage transition point," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:reensy:v:235:y:2023:i:c:s0951832023001849
    DOI: 10.1016/j.ress.2023.109269
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023001849
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmad, Wasim & Khan, Sheraz Ali & Islam, M M Manjurul & Kim, Jong-Myon, 2019. "A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 67-76.
    2. Wang, Han & Liao, Haitao & Ma, Xiaobing & Bao, Rui, 2021. "Remaining Useful Life Prediction and Optimal Maintenance Time Determination for a Single Unit Using Isotonic Regression and Gamma Process Model," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    3. Long, Junqi & Chen, Chuanhai & Liu, Zhifeng & Guo, Jinyan & Chen, Weizheng, 2022. "Stochastic hybrid system approach to task-orientated remaining useful life prediction under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Kumar, Anil & Parkash, Chander & Vashishtha, Govind & Tang, Hesheng & Kundu, Pradeep & Xiang, Jiawei, 2022. "State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    5. Liu, Shujie & Fan, Lexian, 2022. "An adaptive prediction approach for rolling bearing remaining useful life based on multistage model with three-source variability," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    6. Jinjiang Wang & Robert X. Gao & Zhuang Yuan & Zhaoyan Fan & Laibin Zhang, 2019. "A joint particle filter and expectation maximization approach to machine condition prognosis," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 605-621, February.
    7. Wang, Han & Wang, Dongdong & Liu, Haoxiang & Tang, Gang, 2022. "A predictive sliding local outlier correction method with adaptive state change rate determining for bearing remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Bin & Wang, Yanzhong & Zhu, Yunyi & Liu, Peng & Wu, Yu & Lu, Fengxia, 2024. "Time-variant reliability analysis of angular contact ball bearing considering the coupled effect of rolling contact fatigue damage and wear," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Lin, Wenyi & Chai, Yi & Fan, Linchuan & Zhang, Ke, 2024. "Remaining useful life prediction using nonlinear multi-phase Wiener process and variational Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Dinh, Duc-Hanh & Do, Phuc & Hoang, Van-Thanh & Vo, Nhu-Thanh & Bang, Tao Quang, 2024. "A predictive maintenance policy for manufacturing systems considering degradation of health monitoring device," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    4. Wu, Jinxin & He, Deqiang & Li, Jiayi & Miao, Jian & Li, Xianwang & Li, Hongwei & Shan, Sheng, 2024. "Temporal multi-resolution hypergraph attention network for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    5. Wang, Chenyushu & Cai, Baoping & Shao, Xiaoyan & Zhao, Liqian & Sui, Zhongfei & Liu, Keyang & Khan, Javed Akbar & Gao, Lei, 2023. "Dynamic risk assessment methodology of operation process for deepwater oil and gas equipment," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Han & Wang, Dongdong & Liu, Haoxiang & Tang, Gang, 2022. "A predictive sliding local outlier correction method with adaptive state change rate determining for bearing remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Ta, Yuntian & Li, Yanfeng & Cai, Wenan & Zhang, Qianqian & Wang, Zhijian & Dong, Lei & Du, Wenhua, 2023. "Adaptive staged remaining useful life prediction method based on multi-sensor and multi-feature fusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Bermeo-Ayerbe, Miguel Angel & Cocquempot, Vincent & Ocampo-Martinez, Carlos & Diaz-Rozo, Javier, 2023. "Remaining useful life estimation of ball-bearings based on motor current signature analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Liu, Junqiang & Yu, Zhuoqian & Zuo, Hongfu & Fu, Rongchunxue & Feng, Xiaonan, 2022. "Multi-stage residual life prediction of aero-engine based on real-time clustering and combined prediction model," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Chen, Chuanhai & Li, Bowen & Guo, Jinyan & Liu, Zhifeng & Qi, Baobao & Hua, Chunlei, 2022. "Bearing life prediction method based on the improved FIDES reliability model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    6. Liang, Pengfei & Tian, Jiaye & Wang, Suiyan & Yuan, Xiaoming, 2024. "Multi-source information joint transfer diagnosis for rolling bearing with unknown faults via wavelet transform and an improved domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Bahareh Tajiani & Jørn Vatn, 2023. "Adaptive remaining useful life prediction framework with stochastic failure threshold for experimental bearings with different lifetimes under contaminated condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1756-1777, October.
    8. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    9. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Zhu, Zuanyu & Cheng, Junsheng & Wang, Ping & Wang, Jian & Kang, Xin & Yang, Yu, 2023. "A novel fault diagnosis framework for rotating machinery with hierarchical multiscale symbolic diversity entropy and robust twin hyperdisk-based tensor machine," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Wu, Jingyao & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Learning from Class-imbalanced Data with a Model-Agnostic Framework for Machine Intelligent Diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Yang, Ningning & Wang, Zhijian & Cai, Wenan & Li, Yanfeng, 2023. "Data Regeneration Based on Multiple Degradation Processes for Remaining Useful Life Estimation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    13. Gu, Bingmei & Liu, Jiaguo & Ye, Xiaoheng & Gong, Yu & Chen, Jihong, 2024. "Data-driven approach for port resilience evaluation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    14. Zhao, Chao & Shen, Weiming, 2022. "Adaptive open set domain generalization network: Learning to diagnose unknown faults under unknown working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    15. Wang, Zhijie & Zhai, Qingqing & Chen, Piao, 2021. "Degradation modeling considering unit-to-unit heterogeneity-A general model and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang, 2022. "The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    18. Saeed, Umer & Jan, Sana Ullah & Lee, Young-Doo & Koo, Insoo, 2021. "Fault diagnosis based on extremely randomized trees in wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    19. Wang, Yueyao & Lee, I-Chen & Hong, Yili & Deng, Xinwei, 2022. "Building degradation index with variable selection for multivariate sensory data," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    20. Li, Xilin & Teng, Wei & Peng, Dikang & Ma, Tao & Wu, Xin & Liu, Yibing, 2023. "Feature fusion model based health indicator construction and self-constraint state-space estimator for remaining useful life prediction of bearings in wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:235:y:2023:i:c:s0951832023001849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.