IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics0951832023006397.html
   My bibliography  Save this article

Dynamic probabilistic risk assessment with K-shortest-paths planning for generating discrete dynamic event trees

Author

Listed:
  • Maidana, Renan G.
  • Parhizkar, Tarannom
  • Martin, Gabriel San
  • Utne, Ingrid B.

Abstract

Conventional risk assessment methods are often not well suited for fast-changing dynamic and complex systems since the results from the analysis may be averages or valid for a short time before the system’s state changes. A response to this problem is dynamic probabilistic risk assessment (DPRA), which considers the ever-changing nature of such systems and how their dynamic behavior affects the likelihood of future accident scenarios. Performing DPRA is difficult for complex systems — i.e., systems with many interconnected subsystems and components, for example, autonomous systems. There is a combinatorial “explosion†when considering how component failures affect one another and the overall system performance, known in the DPRA literature as the “state explosion problem†, causing DPRA methods to have poor computational performance for large-scale systems. Although solutions to state explosion alleviate the average-case performance, most DPRA methods remain computationally expensive, with exponential worst-case time complexities. In this paper, a method for solving DPRA problems with K-Shortest-Paths planning algorithms is proposed. The method, called KPRA, consists in framing a subset of DPRA problems as relaxed versions of the K-Shortest-Paths (KSP) planning problem, allowing these DPRA problems to be solved by a graph search algorithm called K*, which has a theoretical log-linear worst-case complexity. Therefore, in theory, KPRA with K* solves DPRA problems with computational performance better than exponential. KPRA was implemented and applied to a case study of DPRA for an autonomous ship for validation and comparison with conventional DPRA methods. The case study consists of two ships, one of them autonomous, in a crossing encounter with a possible collision risk. The task is to find the most critical situations for the autonomous ship, i.e., the scenarios where its collision risk is the highest. KPRA’s performance in solving the case study is compared with two conventional DPRA methods. The results show that the KPRA implementation in this work can solve the case study, i.e., produce an output equivalent to the other methods, with a polynomial worst-case computational complexity, i.e., more efficiently than the other methods with exponential complexities.

Suggested Citation

  • Maidana, Renan G. & Parhizkar, Tarannom & Martin, Gabriel San & Utne, Ingrid B., 2024. "Dynamic probabilistic risk assessment with K-shortest-paths planning for generating discrete dynamic event trees," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006397
    DOI: 10.1016/j.ress.2023.109725
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.