IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v237y2023ics095183202300220x.html
   My bibliography  Save this article

Modelling long- and short-term multi-dimensional patterns in predictive maintenance with accumulative attention

Author

Listed:
  • Shi, Yong
  • Zhang, Linzi

Abstract

Predictive Maintenance (PdM) plays a pivotal role in safety management by planning necessary maintenance in advance to avoid future serious breakdown. Predicting the Remaining useful life (RUL) based on historical running data is an important task in PdM. One challenge of this issue is to capture both the temporal and spatial complex patterns especially in ultra-long sequences. Recent studies have demonstrated the superiority of Transformer model in capturing long-term dependencies. However, in the research field of PdM, the canonical Transformer faces with difficulties to deploy due to its limited input length, neglect of local correlations, insensitivity to input pattern and high computational cost. To tackle this, a novel lightweight RUL prediction model called TCNASA integrating temporal convolution network (TCN), accumulative self-attention layer (ASA) and autoregressive component is proposed. It uses TCN firstly to capture local correlations, prunes the redundant short-term cases when matching pairs in attention layers, accumulates global patterns through stacked self-attention layers, and lastly integrates an autoregressive component to enhance the robustness. The experimental results on several real-world PdM datasets have verified the effectiveness and efficiency of the proposed TCNASA model.

Suggested Citation

  • Shi, Yong & Zhang, Linzi, 2023. "Modelling long- and short-term multi-dimensional patterns in predictive maintenance with accumulative attention," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
  • Handle: RePEc:eee:reensy:v:237:y:2023:i:c:s095183202300220x
    DOI: 10.1016/j.ress.2023.109306
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202300220X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Chong & Liu, Ying & Sun, Xianfang & Cairano-Gilfedder, Carla Di & Titmus, Scott, 2021. "An integrated deep learning-based approach for automobile maintenance prediction with GIS data," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Hu, Yang & Miao, Xuewen & Si, Yong & Pan, Ershun & Zio, Enrico, 2022. "Prognostics and health management: A review from the perspectives of design, development and decision," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Fang, Xiaolei & Cai, Xiao & Yan, Tao, 2021. "Remaining useful life prediction based on a multi-sensor data fusion model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. Amrin, Andas & Zarikas, Vasileios & Spitas, Christos, 2018. "Reliability analysis and functional design using Bayesian networks generated automatically by an “Idea Algebra†framework," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 211-225.
    5. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    6. Li, Xingyu & Krivtsov, Vasiliy & Arora, Karunesh, 2022. "Attention-based deep survival model for time series data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jiaxian & Li, Dongpeng & Huang, Ruyi & Chen, Zhuyun & Li, Weihua, 2023. "Aero-engine remaining useful life prediction method with self-adaptive multimodal data fusion and cluster-ensemble transfer regression," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).
    3. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    4. Leopoldo Catania & Stefano Grassi, 2017. "Modelling Crypto-Currencies Financial Time-Series," CEIS Research Paper 417, Tor Vergata University, CEIS, revised 11 Dec 2017.
    5. Francq, Christian & Zakoian, Jean-Michel, 2024. "Finite moments testing in a general class of nonlinear time series models," MPRA Paper 121193, University Library of Munich, Germany.
    6. Harvey, Andrew & Palumbo, Dario, 2023. "Score-driven models for realized volatility," Journal of Econometrics, Elsevier, vol. 237(2).
    7. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
    8. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    9. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    10. Anna Dubinova & Andre Lucas & Sean Telg, 2021. "COVID-19, Credit Risk and Macro Fundamentals," Tinbergen Institute Discussion Papers 21-059/III, Tinbergen Institute.
    11. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    12. Luca Vincenzo Ballestra & Enzo D’Innocenzo & Andrea Guizzardi, 2024. "Score-Driven Modeling with Jumps: An Application to S&P500 Returns and Options," Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 375-406.
    13. Javier Ojea Ferreiro, 2018. "Contagion spillovers between sovereign and financial European sector from a Delta CoVaR approach," Documentos de Trabajo del ICAE 2018-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    14. Dickhaus, Thorsten & Sirotko-Sibirskaya, Natalia, 2019. "Simultaneous statistical inference in dynamic factor models: Chi-square approximation and model-based bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 30-46.
    15. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    16. Ying Shu & Chengfu Ding & Lingbing Tao & Chentao Hu & Zhixin Tie, 2023. "Air Pollution Prediction Based on Discrete Wavelets and Deep Learning," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    17. Gavronski, Pedro Gerhardt & Ziegelmann, Flavio A., 2021. "Measuring systemic risk via GAS models and extreme value theory: Revisiting the 2007 financial crisis," Finance Research Letters, Elsevier, vol. 38(C).
    18. Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.
    19. Christian Francq & Genaro Sucarrat, 2018. "An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 129-154.
    20. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:237:y:2023:i:c:s095183202300220x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.