IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v227y2022ics0951832022003581.html
   My bibliography  Save this article

Modular model and algebraic phase algorithm for reliability modelling and evaluation of phased-mission systems with conflicting phase redundancy

Author

Listed:
  • Wu, Xinyang
  • Yu, Haiyue
  • Balakrishnan, Narayanaswamy

Abstract

Phased-mission systems (PMSs) have been widely used as mission reliability models for many complex systems whose missions can be divided into several phases. In practice, PMSs may have conflicting phase redundancy, that is, a phase task can be performed in more than one phase and redundancy phases can be shared by more than one failed phase. Such PMSs have the following characteristics: (1) the failure of a phase task with redundancy does not directly lead to the failure of the system mission; (2) they have more than one phase level path; and (3) redundancy phases of them have multiple states. This study investigates the reliability modelling and evaluation method of such PMSs with conflicting phase redundancy (PMS-PR). A modular model with new phase states notes was provided to depict the states of phases and deal with the redundant conflicts. A general phase algebraic algorithm is provided to produce all the disjoint phase level paths for the PMS-PR based on the presented model. The mission reliability PMS-PR can be estimated based on disjoint phase level paths. Finally, a simplified telemetry, tracking, and command system under different phase redundancy strategies is analysed to illustrate the effectiveness of the model and algorithm.

Suggested Citation

  • Wu, Xinyang & Yu, Haiyue & Balakrishnan, Narayanaswamy, 2022. "Modular model and algebraic phase algorithm for reliability modelling and evaluation of phased-mission systems with conflicting phase redundancy," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:reensy:v:227:y:2022:i:c:s0951832022003581
    DOI: 10.1016/j.ress.2022.108735
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022003581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108735?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xiaoyue & Hillston, Jane, 2015. "Mission reliability of semi-Markov systems under generalized operational time requirements," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 122-129.
    2. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Lu, Ji-Min & Wu, Xiao-Yue & Liu, Yiliu & Ann Lundteigen, Mary, 2015. "Reliability analysis of large phased-mission systems with repairable components based on success-state sampling," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 123-133.
    4. Chen, Ying & Li, YingYi & Kang, Rui & Ali, Mosleh, 2020. "Reliability analysis of PMS with failure mechanism accumulation rules and a hierarchical method," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    5. Li, Xiang-Yu & Huang, Hong-Zhong & Li, Yan-Feng, 2018. "Reliability analysis of phased mission system with non-exponential and partially repairable components," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 119-127.
    6. Haojie Yang & Yifan Xu & Jianwei Lv, 2020. "An Accelerated Simulation Approach for Multistate System Mission Reliability and Success Probability under Complex Mission," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-18, July.
    7. Yu, Haiyue & Wu, Xinyang & Wu, Xiaoyue, 2020. "An extended object-oriented petri net model for mission reliability evaluation of phased-mission system with time redundancy," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    8. Wu, Xin-yang & Wu, Xiao-Yue, 2015. "Extended object-oriented Petri net model for mission reliability simulation of repairable PMS with common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 109-119.
    9. Cheng, Chen & Yang, Jun & Li, Lei, 2020. "Reliability assessment of multi-state phased mission systems with common bus performance sharing considering transmission loss and performance storage," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    10. Cheng, Chen & Yang, Jun & Li, Lei, 2021. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state phased mission system with common bus performance sharing subjected to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Li, Xiang-Yu & Huang, Hong-Zhong & Li, Yan-Feng & Xiong, Xiaoyan, 2021. "A Markov regenerative process model for phased mission systems under internal degradation and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Lu, Ji-Min & Wu, Xiao-Yue, 2014. "Reliability evaluation of generalized phased-mission systems with repairable components," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 136-145.
    13. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Che, Haiyang, 2021. "A Bayesian network for reliability assessment of man-machine phased-mission system considering the phase dependencies of human cognitive error," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiang-Yu & Li, Xiaopeng & Feng, Jianxiang & Li, Congming & Xiong, Xiaoyan & Huang, Hong-Zhong, 2023. "Reliability analysis and optimization of multi-phased spaceflight with backup missions and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Hongyan Dui & Huiting Xu & Yun-An Zhang, 2022. "Reliability Analysis and Redundancy Optimization of a Command Post Phased-Mission System," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    3. Wang, Chaonan & Xing, Liudong & Yu, Jingui & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2023. "Phase reduction for efficient reliability analysis of dynamic k-out-of-n phased mission systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Wang, Chaonan & Xing, Liudong & Su, Yujie & Guan, Quanlong & Tang, Bo & Hu, Yuliang, 2023. "Reliability analysis of dynamic voting phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Matsuoka, Takeshi, 2023. "Reliability analysis of a BWR plant system at startup stage  - analysis by the GO-FLOW methodology with consideration of loop structures and phased mission problem -," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chaonan & Xing, Liudong & Yu, Jingui & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2023. "Phase reduction for efficient reliability analysis of dynamic k-out-of-n phased mission systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Wang, Xiaolin & Xu, Jihui & Zhang, Lei & Wang, Ning, 2023. "Mission success probability optimizing of phased mission system balancing the phase backup and system risk: A novel GERT mechanism," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Li, Xiang-Yu & Huang, Hong-Zhong & Li, Yan-Feng & Xiong, Xiaoyan, 2021. "A Markov regenerative process model for phased mission systems under internal degradation and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Xiao, Yong & Wei, Shanbi & Chai, Yi & Pan, Tianle & Hou, Yang, 2023. "Reliability optimization of flexible test system based on pyro-mechanical device products production driven," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Wang, Chaonan & Xing, Liudong & Su, Yujie & Guan, Quanlong & Tang, Bo & Hu, Yuliang, 2023. "Reliability analysis of dynamic voting phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Matsuoka, Takeshi, 2023. "Reliability analysis of a BWR plant system at startup stage  - analysis by the GO-FLOW methodology with consideration of loop structures and phased mission problem -," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    8. Yu, Haiyue & Wu, Xinyang & Wu, Xiaoyue, 2020. "An extended object-oriented petri net model for mission reliability evaluation of phased-mission system with time redundancy," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    9. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang & Guo, Peng & Zhu, Wenjin, 2020. "Mission success probability optimization for phased-mission systems with repairable component modules," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    10. Li, Jingkui & Lu, Yuze & Liu, Xiaona & Jiang, Xiuhong, 2023. "Reliability analysis of cold-standby phased-mission system based on GO-FLOW methodology and the universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    11. Cheng, Chen & Yang, Jun & Li, Lei, 2021. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state phased mission system with common bus performance sharing subjected to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Li, Xiang-Yu & Li, Xiaopeng & Feng, Jianxiang & Li, Congming & Xiong, Xiaoyan & Huang, Hong-Zhong, 2023. "Reliability analysis and optimization of multi-phased spaceflight with backup missions and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    13. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Che, Haiyang, 2021. "A Bayesian network for reliability assessment of man-machine phased-mission system considering the phase dependencies of human cognitive error," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    14. Tang, Maochun & Xiahou, Tangfan & Liu, Yu, 2023. "Mission performance analysis of phased-mission systems with cross-phase competing failures," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Li, Yan & Cui, Lirong & Lin, Cong, 2017. "Modeling and analysis for multi-state systems with discrete-time Markov regime-switching," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 41-49.
    16. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    17. Qiu, Qingan & Cui, Lirong, 2019. "Gamma process based optimal mission abort policy," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    18. Wang, Chaonan & Wang, Shuli & Xing, Liudong & Guan, Quanlong, 2023. "Efficient performability analysis of dynamic multi-state k-out-of-n: G systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Li, Xiang-Yu & Li, Yan-Feng & Huang, Hong-Zhong, 2020. "Redundancy allocation problem of phased-mission system with non-exponential components and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    20. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:227:y:2022:i:c:s0951832022003581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.