IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v216y2021ics0951832021004361.html
   My bibliography  Save this article

Security and reliability of N-version cloud-based task solvers with individual version cancellation under data theft attacks

Author

Listed:
  • Levitin, Gregory
  • Xing, Liudong
  • Dai, Yanshun

Abstract

As one of the enabling technologies for cyber-physical systems and Internet of Things systems, the cloud computing provides cost-effective resources in an on-demand manner. This merit lends the cloud to running critical services that need redundancy to achieve high reliability. This paper models a cloud service using the N-version programming (NVP) redundancy technique that creates and runs multiple task solver versions (TSVs) in parallel to perform a requested service and decides the output using the threshold voting. A malicious attacker may get an unauthorized access to a user's data when the user's and attacker's virtual machines co-reside in the same cloud server. To reduce the chance of the co-residence attack success and users’ expense, an individual TSV cancellation policy is implemented, which removes a TSV's virtual machine from its host server immediately once this TSV completes the task execution. A probabilistic method is proposed to evaluate the task reliability and data security under the considered cloud service model. Constrained optimization problems are further formulated and solved, which find the optimal number of TSVs maximizing the task reliability subject to providing a desired level of data security. Examples are presented to demonstrate interactions and impacts of different parameters on the task reliability and data security, as well as on the optimization solutions.

Suggested Citation

  • Levitin, Gregory & Xing, Liudong & Dai, Yanshun, 2021. "Security and reliability of N-version cloud-based task solvers with individual version cancellation under data theft attacks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021004361
    DOI: 10.1016/j.ress.2021.107920
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021004361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Wei & Zhao, Long & Zeng, Bo, 2014. "Optimal power grid protection through a defender–attacker–defender model," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 83-89.
    2. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2020. "Optimal early warning defense of N-version programming service against co-resident attacks in cloud system," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    3. Luo, Liang & Xing, Liudong & Levitin, Gregory, 2019. "Optimizing dynamic survivability and security of replicated data in cloud systems under co-residence attacks," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    4. Gregory Levitin & Liudong Xing & Hong‐Zhong Huang, 2019. "Security of Separated Data in Cloud Systems with Competing Attack Detection and Data Theft Processes," Risk Analysis, John Wiley & Sons, vol. 39(4), pages 846-858, April.
    5. Xing, Liudong & Levitin, Gregory, 2017. "Balancing theft and corruption threats by data partition in cloud system with independent server protection," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 248-254.
    6. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Co-residence based data vulnerability vs. security in cloud computing system with random server assignment," European Journal of Operational Research, Elsevier, vol. 267(2), pages 676-686.
    7. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2020. "Optimization of time constrained N-version programming service components with competing task execution and version corruption processes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    8. G Levitin & K Hausken, 2012. "Individual versus overarching protection against strategic attacks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(7), pages 969-981, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Co-residence based data theft game in cloud system with virtual machine replication and cancellation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Co-residence based data theft game in cloud system with virtual machine replication and cancellation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2021. "Minimization of Expected User Losses Considering Co-resident Attacks in Cloud System with Task Replication and Cancellation," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    3. Zhang, Xiaoyu & Xu, Maochao & Da, Gaofeng & Zhao, Peng, 2021. "Ensuring confidentiality and availability of sensitive data over a network system under cyber threats," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    4. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2020. "Optimal early warning defense of N-version programming service against co-resident attacks in cloud system," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2020. "Optimization of time constrained N-version programming service components with competing task execution and version corruption processes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Gregory Levitin & Liudong Xing & Hong‐Zhong Huang, 2019. "Security of Separated Data in Cloud Systems with Competing Attack Detection and Data Theft Processes," Risk Analysis, John Wiley & Sons, vol. 39(4), pages 846-858, April.
    7. Heping Jia & Rui Peng & Yi Ding & Changzheng Shao, 2020. "Reliability analysis of distributed storage systems considering data loss and theft," Journal of Risk and Reliability, , vol. 234(2), pages 303-321, April.
    8. Li, Yijia & Hu, Xiaoxiao & Zhao, Peng, 2021. "On the reliability of a voting system under cyber attacks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Xiao, Hui & Lin, Chen & Kou, Gang & Peng, Rui, 2020. "Optimal resource allocation for defending k-out-of-n systems against sequential intentional and unintentional impacts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    10. Peng, Rui & Xiao, Hui & Guo, Jianjun & Lin, Chen, 2020. "Optimal defense of a distributed data storage system against hackers’ attacks," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    11. Luo, Liang & Xing, Liudong & Levitin, Gregory, 2019. "Optimizing dynamic survivability and security of replicated data in cloud systems under co-residence attacks," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    12. Han, Zhong & Tian, Liting & Cheng, Lin, 2021. "A deducing-based reliability optimization for electrical equipment with constant failure rate components duration their mission profile," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    13. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Lin, Chen & Xiao, Hui & Kou, Gang & Peng, Rui, 2020. "Defending a series system with individual protection, overarching protection, and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    15. Marcos Costa Roboredo & Luiz Aizemberg & Artur Alves Pessoa, 2019. "An exact approach for the r-interdiction covering problem with fortification," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 111-131, March.
    16. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
    17. Richard Li-Yang Chen & Neng Fan & Ali Pinar & Jean-Paul Watson, 2017. "Contingency-constrained unit commitment with post-contingency corrective recourse," Annals of Operations Research, Springer, vol. 249(1), pages 381-407, February.
    18. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    19. Jiang, J. & Liu, X., 2018. "Multi-objective Stackelberg game model for water supply networks against interdictions with incomplete information," European Journal of Operational Research, Elsevier, vol. 266(3), pages 920-933.
    20. Ouyang, Min & Liu, Chuang & Xu, Min, 2019. "Value of resilience-based solutions on critical infrastructure protection: Comparing with robustness-based solutions," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021004361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.