IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v144y2015icp23-34.html
   My bibliography  Save this article

Human reliability under sleep deprivation: Derivation of performance shaping factor multipliers from empirical data

Author

Listed:
  • Griffith, Candice D.
  • Mahadevan, Sankaran

Abstract

This paper develops a probabilistic approach that could use empirical data to derive values of performance shaping factor (PSF) multipliers for use in quantitative human reliability analysis (HRA). The proposed approach is illustrated with data on sleep deprivation effects on performance. A review of existing HRA methods reveals that sleep deprivation is not explicitly included at present, and expert opinion is frequently used to inform HRA model multipliers. In this paper, quantitative data from empirical studies regarding the effect of continuous hours of wakefulness on performance measures (reaction time, accuracy, and number of lapses) are used to develop a method to derive PSF multiplier values for sleep deprivation, in the context of the SPAR-H model. Data is extracted from the identified studies according to the meta-analysis research synthesis method and used to investigate performance trends and error probabilities. The error probabilities in test and control conditions are compared, and the resulting probability ratios are suggested for use in informing the selection of PSF multipliers in HRA methods. Although illustrated for sleep deprivation, the proposed methodology is general, and can be applied to other performance shaping factors.

Suggested Citation

  • Griffith, Candice D. & Mahadevan, Sankaran, 2015. "Human reliability under sleep deprivation: Derivation of performance shaping factor multipliers from empirical data," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 23-34.
  • Handle: RePEc:eee:reensy:v:144:y:2015:i:c:p:23-34
    DOI: 10.1016/j.ress.2015.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015001453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1041-1060.
    2. Griffith, Candice D. & Mahadevan, Sankaran, 2011. "Inclusion of fatigue effects in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1437-1447.
    3. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 2: IDAC performance influencing factors model," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1014-1040.
    4. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 4: IDAC causal model of operator problem-solving response," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1061-1075.
    5. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 997-1013.
    6. Groth, Katrina M. & Swiler, Laura P., 2013. "Bridging the gap between HRA research and HRA practice: A Bayesian network version of SPAR-H," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 33-42.
    7. Katrina M Groth & Ali Mosleh, 2012. "Deriving causal Bayesian networks from human reliability analysis data: A methodology and example model," Journal of Risk and Reliability, , vol. 226(4), pages 361-379, August.
    8. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1076-1101.
    9. Kobbeltvedt, Therese & Brun, Wibecke & Laberg, Jon Christian, 2005. "Cognitive processes in planning and judgements under sleep deprivation and time pressure," Organizational Behavior and Human Decision Processes, Elsevier, vol. 98(1), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rasmussen, Martin & Laumann, Karin, 2020. "The evaluation of fatigue as a performance shaping factor in the Petro-HRA method," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    2. Morais, Caroline & Estrada-Lugo, Hector Diego & Tolo, Silvia & Jacques, Tiago & Moura, Raphael & Beer, Michael & Patelli, Edoardo, 2022. "Robust data-driven human reliability analysis using credal networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    3. Porthin, Markus & Liinasuo, Marja & Kling, Terhi, 2020. "Effects of digitalization of nuclear power plant control rooms on human reliability analysis – A review," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    4. Mitra Hannani & Marc Bascompta & Mojtaba Gerami Sabzevar & Hesam Dehghani & Ali Asghar Khajevandi, 2023. "Causal Analysis of Safety Risk Perception of Iranian Coal Mining Workers Using Fuzzy Delphi and DEMATEL," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    5. Wenjun Zhang & Xiangkun Meng & Xue Yang & Hongguang Lyu & Xiang-Yu Zhou & Qingwu Wang, 2022. "A Practical Risk-Based Model for Early Warning of Seafarer Errors Using Integrated Bayesian Network and SPAR-H," IJERPH, MDPI, vol. 19(16), pages 1-14, August.
    6. Zhang, Xiaoge & Mahadevan, Sankaran & Lau, Nathan & Weinger, Matthew B., 2020. "Multi-source information fusion to assess control room operator performance," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    7. Liu, Peng & Qiu, Yongping & Hu, Juntao & Tong, Jiejuan & Zhao, Jun & Li, Zhizhong, 2020. "Expert judgments for performance shaping Factors’ multiplier design in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Groth, Katrina M. & Smith, Reuel & Moradi, Ramin, 2019. "A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud & van Gelder, Pieter, 2020. "BN-SLIM: A Bayesian Network methodology for human reliability assessment based on Success Likelihood Index Method (SLIM)," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Peng Liu & Zhizhong Li, 2014. "Human Error Data Collection and Comparison with Predictions by SPAR‐H," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1706-1719, September.
    4. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zhang, Li & Liu, Xueyang & Ding, Qianqiao & Qin, Zhuomin & ÄŒepin, Marko, 2021. "Analysis of dependencies among performance shaping factors in human reliability analysis based on a system dynamics approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Di Pasquale, Valentina & Miranda, Salvatore & Iannone, Raffaele & Riemma, Stefano, 2015. "A Simulator for Human Error Probability Analysis (SHERPA)," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 17-32.
    6. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 1 — methodology," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    8. Vaurio, Jussi K., 2009. "Human factors, human reliability and risk assessment in license renewal of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1818-1826.
    9. Jung, Wondea & Park, Jinkyun & Kim, Yochan & Choi, Sun Yeong & Kim, Seunghwan, 2020. "HuREX – A framework of HRA data collection from simulators in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    10. París, C. & Queral, C. & Mula, J. & Gómez-Magán, J. & Sánchez-Perea, M. & Meléndez, E. & Gil, J., 2019. "Quantitative risk reduction by means of recovery strategies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 13-32.
    11. Li, Jue & Li, Heng & Wang, Fan & Cheng, Andy S.K. & Yang, Xincong & Wang, Hongwei, 2021. "Proactive analysis of construction equipment operators’ hazard perception error based on cognitive modeling and a dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    12. Wang, Lijing & Wang, Yanlong & Chen, Yingchun & Pan, Xing & Zhang, Wenjin & Zhu, Yanzhi, 2020. "Methodology for assessing dependencies between factors influencing airline pilot performance reliability: A case of taxiing tasks," Journal of Air Transport Management, Elsevier, vol. 89(C).
    13. Bandeira, Michelle Carvalho Galvão Silva Pinto & Correia, Anderson Ribeiro & Martins, Marcelo Ramos, 2018. "General model analysis of aeronautical accidents involving human and organizational factors," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 137-146.
    14. Lee, Hyun-Chul & Seong, Poong-Hyun, 2009. "A computational model for evaluating the effects of attention, memory, and mental models on situation assessment of nuclear power plant operators," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1796-1805.
    15. Aminu Darda’u Rafindadi & Nasir Shafiq & Idris Othman & Miljan Mikić, 2023. "Mechanism Models of the Conventional and Advanced Methods of Construction Safety Training. Is the Traditional Method of Safety Training Sufficient?," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    16. Al-Douri, Ahmad & Levine, Camille S. & Groth, Katrina M., 2023. "Identifying human failure events (HFEs) for external hazard probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Bolbot, Victor & Theotokatos, Gerasimos & Bujorianu, Luminita Manuela & Boulougouris, Evangelos & Vassalos, Dracos, 2019. "Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 179-193.
    18. Shirley, Rachel Benish & Smidts, Carol & Zhao, Yunfei, 2020. "Development of a quantitative Bayesian network mapping objective factors to subjective performance shaping factor evaluations: An example using student operators in a digital nuclear power plant simul," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    19. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 2 — Application," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    20. Schroer, Suzanne & Modarres, Mohammad, 2013. "An event classification schema for evaluating site risk in a multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 40-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:144:y:2015:i:c:p:23-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.