IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v106y2012icp37-44.html
   My bibliography  Save this article

The discrete additive Weibull distribution: A bathtub-shaped hazard for discontinuous failure data

Author

Listed:
  • Bebbington, Mark
  • Lai, Chin-Diew
  • Wellington, Morgan
  • Zitikis, RiÄ ardas

Abstract

Although failure data are usually treated as being continuous, they may have been collected in a discrete manner, or in fact be discrete in nature. Reliability models with bathtub-shaped hazard rate are fundamental to the concepts of burn-in and maintenance, but how well do they incorporate discrete data? We explore discrete versions of the additive Weibull distribution, which has the twin virtues of mathematical tractability and the ability to produce bathtub-shaped hazard rate functions. We derive conditions on the parameters for the hazard rate function to be increasing, decreasing, or bathtub shaped. While discrete versions may have the same shaped hazard rate for the same parameter values, we find that when fitted to data the fitted hazard rate shapes can vary between versions. Our results are illustrated using several real-life data sets, and the implications of using continuous models for discrete data discussed.

Suggested Citation

  • Bebbington, Mark & Lai, Chin-Diew & Wellington, Morgan & Zitikis, RiÄ ardas, 2012. "The discrete additive Weibull distribution: A bathtub-shaped hazard for discontinuous failure data," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 37-44.
  • Handle: RePEc:eee:reensy:v:106:y:2012:i:c:p:37-44
    DOI: 10.1016/j.ress.2012.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012001147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2007. "A flexible Weibull extension," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 719-726.
    2. Carrasco, Jalmar M.F. & Ortega, Edwin M.M. & Cordeiro, Gauss M., 2008. "A generalized modified Weibull distribution for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 450-462, December.
    3. Jiang, R., 2010. "Discrete competing risk model with application to modeling bus-motor failure data," Reliability Engineering and System Safety, Elsevier, vol. 95(9), pages 981-988.
    4. Mark Bebbington & Chin-Diew Lai & Ričardas Zitikis, 2007. "Optimum Burn-in Time for a Bathtub Shaped Failure Distribution," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    2. Alessandro Barbiero, 2022. "Discrete analogues of continuous bivariate probability distributions," Annals of Operations Research, Springer, vol. 312(1), pages 23-43, May.
    3. Walid Emam & Yusra Tashkandy & G.G. Hamedani & Mohamed Abdelhamed Shehab & Mohamed Ibrahim & Haitham M. Yousof, 2023. "A Novel Discrete Generator with Modeling Engineering, Agricultural and Medical Count and Zero-Inflated Real Data with Bayesian, and Non-Bayesian Inference," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    4. Guibing, Gao & Wenhui, Yue & Wenchu, Ou & Hao, Tang, 2018. "Vulnerability evaluation method applied to manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 255-265.
    5. Robab Aghazadeh Chakherloo & Mohammad Pourgol-Mohammad & Kamran Sepanloo, 2017. "Change points estimations of bathtub-shaped hazard functions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 553-559, September.
    6. Hanan Haj Ahmad & Dina A. Ramadan & Ehab M. Almetwally, 2024. "Evaluating the Discrete Generalized Rayleigh Distribution: Statistical Inferences and Applications to Real Data Analysis," Mathematics, MDPI, vol. 12(2), pages 1-23, January.
    7. M. S. Eliwa & Ziyad Ali Alhussain & M. El-Morshedy, 2020. "Discrete Gompertz-G Family of Distributions for Over- and Under-Dispersed Data with Properties, Estimation, and Applications," Mathematics, MDPI, vol. 8(3), pages 1-26, March.
    8. Mohamed S. Eliwa & Mahmoud El-Morshedy & Haitham M. Yousof, 2022. "A Discrete Exponential Generalized-G Family of Distributions: Properties with Bayesian and Non-Bayesian Estimators to Model Medical, Engineering and Agriculture Data," Mathematics, MDPI, vol. 10(18), pages 1-29, September.
    9. Mohamed Aboraya & Haitham M. Yousof & G.G. Hamedani & Mohamed Ibrahim, 2020. "A New Family of Discrete Distributions with Mathematical Properties, Characterizations, Bayesian and Non-Bayesian Estimation Methods," Mathematics, MDPI, vol. 8(10), pages 1-25, September.
    10. Mohamed Ibrahim & M. Masoom Ali & Haitham M. Yousof, 2023. "The Discrete Analogue of the Weibull G Family: Properties, Different Applications, Bayesian and Non-Bayesian Estimation Methods," Annals of Data Science, Springer, vol. 10(4), pages 1069-1106, August.
    11. Cihangir Kan & Serkan Eryilmaz, 2021. "Reliability assessment of a discrete time cold standby repairable system," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 613-628, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hadi Saboori & Ghobad Barmalzan & Seyyed Masih Ayat, 2020. "Generalized Modified Inverse Weibull Distribution: Its Properties and Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 247-269, November.
    2. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    3. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2009. "Balancing burn-in and mission times in environments with catastrophic and repairable failures," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1314-1321.
    4. Gupta, Ashutosh & Mukherjee, Bhaswati & Upadhyay, S.K., 2008. "Weibull extension model: A Bayes study using Markov chain Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1434-1443.
    5. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    6. C. Satheesh Kumar & S. Dharmaja, 2014. "On some properties of Kies distribution," METRON, Springer;Sapienza Università di Roma, vol. 72(1), pages 97-122, April.
    7. Zhang, Tieling & Dwight, Richard, 2013. "Choosing an optimal model for failure data analysis by graphical approach," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 111-123.
    8. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    9. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    10. Saralees Nadarajah & Gauss Cordeiro & Edwin Ortega, 2013. "The exponentiated Weibull distribution: a survey," Statistical Papers, Springer, vol. 54(3), pages 839-877, August.
    11. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    12. Pescim, Rodrigo R. & Demétrio, Clarice G.B. & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Urbano, Mariana R., 2010. "The beta generalized half-normal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 945-957, April.
    13. Bagheri, S.F. & Bahrami Samani, E. & Ganjali, M., 2016. "The generalized modified Weibull power series distribution: Theory and applications," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 136-160.
    14. Almalki, Saad J. & Yuan, Jingsong, 2013. "A new modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 164-170.
    15. Peng, Xiuyun & Yan, Zaizai, 2014. "Estimation and application for a new extended Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 34-42.
    16. He, Bo & Cui, Weimin & Du, Xiaofeng, 2016. "An additive modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 28-37.
    17. Singla, Neetu & Jain, Kanchan & Kumar Sharma, Suresh, 2012. "The Beta Generalized Weibull distribution: Properties and applications," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 5-15.
    18. Paranaíba, Patrícia F. & Ortega, Edwin M.M. & Cordeiro, Gauss M. & Pescim, Rodrigo R., 2011. "The beta Burr XII distribution with application to lifetime data," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1118-1136, February.
    19. Xu, Meng & Droguett, Enrique López & Lins, Isis Didier & das Chagas Moura, Márcio, 2017. "On the q-Weibull distribution for reliability applications: An adaptive hybrid artificial bee colony algorithm for parameter estimation," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 93-105.
    20. Filippo Domma & Francesca Condino & Božidar V. Popović, 2017. "A new generalized weighted Weibull distribution with decreasing, increasing, upside-down bathtub, N-shape and M-shape hazard rate," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 2978-2993, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:106:y:2012:i:c:p:37-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.