IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v100y2012icp84-92.html
   My bibliography  Save this article

A practical method for the maintainability assessment in industrial devices using indicators and specific attributes

Author

Listed:
  • Moreu De Leon, Pedro
  • González-Prida Díaz, Vicente
  • Barberá Martínez, Luis
  • Crespo Márquez, Adolfo

Abstract

The objective of this paper is to describe a procedure to obtain maintainability indicators for industrial devices. This analysis can be helpful, among other cases, to compare systems, to achieve a better design regarding maintainability requirements, to improve this maintainability under specific industrial environment and to foresee maintainability problems due to eventual changes in a device operation conditions. This maintainability assessment can be carried out at any stage of the industrial asset life cycle.

Suggested Citation

  • Moreu De Leon, Pedro & González-Prida Díaz, Vicente & Barberá Martínez, Luis & Crespo Márquez, Adolfo, 2012. "A practical method for the maintainability assessment in industrial devices using indicators and specific attributes," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 84-92.
  • Handle: RePEc:eee:reensy:v:100:y:2012:i:c:p:84-92
    DOI: 10.1016/j.ress.2011.12.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201100281X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.12.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2011. "Maintainability analysis considering time-dependent and time-independent covariates," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 210-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parada Puig, J.E. & Basten, R.J.I., 2015. "Defining line replaceable units," European Journal of Operational Research, Elsevier, vol. 247(1), pages 310-320.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Nouri Qarahasanlou & Ali Zamani & Abbas Barabadi & Mahdi Mokhberdoran, 2021. "Resilience Assessment: A Performance-Based Importance Measure," Energies, MDPI, vol. 14(22), pages 1-16, November.
    2. Luo, Xu & Ge, Zhexue & Zhang, ShiGang & Yang, Yongmin, 2021. "A method for the maintainability evaluation at design stage using maintainability design attributes," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    3. Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2014. "Application of reliability models with covariates in spare part prediction and optimization – A case study," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 1-7.
    4. Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
    5. Wang, Shixuan & Syntetos, Aris A. & Liu, Ying & Di Cairano-Gilfedder, Carla & Naim, Mohamed M., 2023. "Improving automotive garage operations by categorical forecasts using a large number of variables," European Journal of Operational Research, Elsevier, vol. 306(2), pages 893-908.
    6. Barabadi, A. & Ayele, Y.Z., 2018. "Post-disaster infrastructure recovery: Prediction of recovery rate using historical data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 209-223.
    7. Marwa Belhaj Salem & Mitra Fouladirad & Estelle Deloux, 2021. "Prognostic and Classification of Dynamic Degradation in a Mechanical System Using Variance Gamma Process," Mathematics, MDPI, vol. 9(3), pages 1-25, January.
    8. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Barabadi, Abbas & Tobias Gudmestad, Ove & Barabady, Javad, 2015. "RAMS data collection under Arctic conditions," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 92-99.
    10. Parada Puig, J.E. & Basten, R.J.I., 2015. "Defining line replaceable units," European Journal of Operational Research, Elsevier, vol. 247(1), pages 310-320.
    11. Naseri, Masoud & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2016. "Availability assessment of oil and gas processing plants operating under dynamic Arctic weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 66-82.
    12. Rezgar Zaki & Abbas Barabadi & Javad Barabady & Ali Nouri Qarahasanlou, 2022. "Observed and unobserved heterogeneity in failure data analysis," Journal of Risk and Reliability, , vol. 236(1), pages 194-207, February.
    13. Ali N Qarahasanlou & Abbas Barabadi & Yonas Z Ayele, 2018. "Production performance analysis during operation phase: A case study," Journal of Risk and Reliability, , vol. 232(6), pages 559-575, December.
    14. Okaro, Ikenna Anthony & Tao, Longbin, 2016. "Reliability analysis and optimisation of subsea compression system facing operational covariate stresses," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 159-174.
    15. Barker, Kash & Baroud, Hiba, 2014. "Proportional hazards models of infrastructure system recovery," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 201-206.
    16. Izquierdo, J. & Crespo Márquez, A. & Uribetxebarria, J., 2019. "Dynamic artificial neural network-based reliability considering operational context of assets," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 483-493.
    17. Rezgar Zaki & Abbas Barabadi & Ali Nouri Qarahasanlou & A. H. S. Garmabaki, 2019. "A mixture frailty model for maintainability analysis of mechanical components: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1646-1653, December.
    18. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "Resilience analysis: A formulation to model risk factors on complex system resilience," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 871-883, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:100:y:2012:i:c:p:84-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.