IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v87y2014icp117-125.html
   My bibliography  Save this article

Mechanical recycling of EOL concrete into high-grade aggregates

Author

Listed:
  • Lotfi, Somayeh
  • Deja, Jan
  • Rem, Peter
  • Mróz, Radosław
  • van Roekel, Eric
  • van der Stelt, Hans

Abstract

Recycling End of Life (EOL) concrete into high-grade aggregate for new concrete is a challenging prospect for the building sector because of the competing constraints of low recycling process cost and high aggregate product quality. A further complicating factor is that, from the perspective of the environment, there is a strong societal drive to reduce bulk transport of building materials in urban environments, and to apply more in situ recycling technologies for Construction & Demolition Waste. The European C2CA project investigates a combination of smart demolition, grinding of the crushed concrete in an autogenous mill to increase the liberation of cement mortar from the surface of aggregates and a novel dry classification technology called ADR to remove the fines. The feasibility of this recycling process was examined in a demonstration project involving 20,000tons of EOL concrete from two office towers in Groningen, the Netherlands. Results show that the +4mm recycled aggregate compares favorably with natural aggregate in terms of workability and the compressive strength of the new concrete, showing 30% higher strength after 7 days.

Suggested Citation

  • Lotfi, Somayeh & Deja, Jan & Rem, Peter & Mróz, Radosław & van Roekel, Eric & van der Stelt, Hans, 2014. "Mechanical recycling of EOL concrete into high-grade aggregates," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 117-125.
  • Handle: RePEc:eee:recore:v:87:y:2014:i:c:p:117-125
    DOI: 10.1016/j.resconrec.2014.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914000688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tam, Vivian W.Y. & Tam, C.M. & Le, K.N., 2007. "Removal of cement mortar remains from recycled aggregate using pre-soaking approaches," Resources, Conservation & Recycling, Elsevier, vol. 50(1), pages 82-101.
    2. Vefago, Luiz H. Maccarini & Avellaneda, Jaume, 2013. "Recycling concepts and the index of recyclability for building materials," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 127-135.
    3. Rao, Akash & Jha, Kumar N. & Misra, Sudhir, 2007. "Use of aggregates from recycled construction and demolition waste in concrete," Resources, Conservation & Recycling, Elsevier, vol. 50(1), pages 71-81.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noushin Islam & Malindu Sandanayake & Shobha Muthukumaran & Dimuth Navaratna, 2024. "Review on Sustainable Construction and Demolition Waste Management—Challenges and Research Prospects," Sustainability, MDPI, vol. 16(8), pages 1-30, April.
    2. Anna M. Grabiec & Jeonghyun Kim & Andrzej Ubysz & Pilar Bilbao, 2021. "Some Remarks towards a Better Understanding of the Use of Concrete Recycled Aggregate: A Review," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    3. Tam, Vivian W.Y. & Le, Khoa N., 2007. "Aggregate testing using 2nd-, 7th- and 10th-order interpolation polynomials," Resources, Conservation & Recycling, Elsevier, vol. 52(1), pages 39-57.
    4. Wijayasundara, Mayuri & Mendis, Priyan & Zhang, Lihai & Sofi, Massoud, 2016. "Financial assessment of manufacturing recycled aggregate concrete in ready-mix concrete plants," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 187-201.
    5. Yuh-Shan Ho, 2019. "Comment on Chen, J.; Su, Y.; Si, H.; Chen, J. Managerial Areas of Construction and Demolition Waste: A Scientometric Review. Int. J. Environ. Res. Public Health 2018, 15 , 2350," IJERPH, MDPI, vol. 16(10), pages 1-4, May.
    6. Doussoulin, Jean Pierre & Bittencourt, Mariana, 2022. "How effective is the construction sector in promoting the circular economy in Brazil and France? : A waste input-output analysis," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 47-58.
    7. Haseog Kim & Sangki Park & Hayong Kim, 2016. "The Optimum Production Method for Quality Improvement of Recycled Aggregates Using Sulfuric Acid and the Abrasion Method," IJERPH, MDPI, vol. 13(8), pages 1-14, July.
    8. Daniele Kulisch & Amnon Katz & Semion Zhutovsky, 2022. "Quantification of Residual Unhydrated Cement Content in Cement Pastes as a Potential for Recovery," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    9. Wanchai Yodsudjai & Kirati Nitichote, 2022. "Chloride Penetration Behavior of Concrete Made from Various Types of Recycled Concrete Aggregate," Sustainability, MDPI, vol. 14(5), pages 1-14, February.
    10. Knoeri, Christof & Binder, Claudia R. & Althaus, Hans-Joerg, 2011. "Decisions on recycling: Construction stakeholders’ decisions regarding recycled mineral construction materials," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1039-1050.
    11. Jin, Ruoyu & Li, Bo & Zhou, Tongyu & Wanatowski, Dariusz & Piroozfar, Poorang, 2017. "An empirical study of perceptions towards construction and demolition waste recycling and reuse in China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 86-98.
    12. Noguchi, Takafumi & Park, Won-Jun & Kitagaki, Ryoma, 2015. "Risk evaluation for recycled aggregate according to deleterious impurity content considering deconstruction scenarios and production methods," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 405-416.
    13. Rabbat, Christelle & Awad, Sary & Villot, Audrey & Rollet, Delphine & Andrès, Yves, 2022. "Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Aneeta Mary Joseph & Stijn Matthys & Nele De Belie, 2022. "Properties of Concrete with Recycled Aggregates Giving a Second Life to Municipal Solid Waste Incineration Bottom Ash Concrete," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    15. Tang, Xu & Li, Chunyan & Hu, Shiyuan & Liu, Yaolin & Geng, Hong, 2016. "Evaluating extended land consumption in building life cycle to improve land conservation: A case study in Shenyang, China," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 78-89.
    16. Castorina S. Vieira & Paulo M. Pereira, 2022. "Influence of the Geosynthetic Type and Compaction Conditions on the Pullout Behaviour of Geosynthetics Embedded in Recycled Construction and Demolition Materials," Sustainability, MDPI, vol. 14(3), pages 1-21, January.
    17. Sabai, M.M. & Cox, M.G.D.M. & Mato, R.R. & Egmond, E.L.C. & Lichtenberg, J.J.N., 2013. "Concrete block production from construction and demolition waste in Tanzania," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 9-19.
    18. Paulo Miguel Pereira & Castorina Silva Vieira, 2022. "A Literature Review on the Use of Recycled Construction and Demolition Materials in Unbound Pavement Applications," Sustainability, MDPI, vol. 14(21), pages 1-28, October.
    19. Spoerri, Andy & Lang, Daniel J. & Binder, Claudia R. & Scholz, Roland W., 2009. "Expert-based scenarios for strategic waste and resource management planning—C&D waste recycling in the Canton of Zurich, Switzerland," Resources, Conservation & Recycling, Elsevier, vol. 53(10), pages 592-600.
    20. Heng Wu & Xibin Liu & Xirui Ma & Guifeng Liu, 2024. "Effects of Multi-Walled Carbon Nanotubes and Recycled Fine Aggregates on the Multi-Generational Cycle Properties of Reactive Powder Concrete," Sustainability, MDPI, vol. 16(5), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:87:y:2014:i:c:p:117-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.