IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v74y2013icp75-81.html
   My bibliography  Save this article

Limitations of model-fitting methods for kinetic analysis: Polystyrene thermal degradation

Author

Listed:
  • Sánchez-Jiménez, Pedro E.
  • Pérez-Maqueda, Luis A.
  • Perejón, Antonio
  • Criado, José M.

Abstract

In this paper, some clarifications regarding the use of model-fitting methods of kinetic analysis are provided in response to the lack of plot linearity and dispersion in the activation energy values for the thermal degradation of polystyrene found in the literature and some results proposing an nth order model as the most suitable one. In the present work, two model-fitting methods based on the differential and integral forms of the general kinetic equation are evaluated using both simulated and experimental data, showing that the differential method is recommended due to its higher discrimination power. Moreover, the intrinsic limitations of model-fitting methods are highlighted: the use of a limited set of kinetic models to fit experimental data and the ideal nature of such models. Finally, it is concluded that a chain scission model is more appropriate than first order.

Suggested Citation

  • Sánchez-Jiménez, Pedro E. & Pérez-Maqueda, Luis A. & Perejón, Antonio & Criado, José M., 2013. "Limitations of model-fitting methods for kinetic analysis: Polystyrene thermal degradation," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 75-81.
  • Handle: RePEc:eee:recore:v:74:y:2013:i:c:p:75-81
    DOI: 10.1016/j.resconrec.2013.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344913000517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2013.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brems, Anke & Baeyens, Jan & Beerlandt, Johan & Dewil, Raf, 2011. "Thermogravimetric pyrolysis of waste polyethylene-terephthalate and polystyrene: A critical assessment of kinetics modelling," Resources, Conservation & Recycling, Elsevier, vol. 55(8), pages 772-781.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Weizhen & Huang, Yanqin & Liu, Huacai & Zhang, Yan & Jiang, Yang & Wang, Yan & Wan, Junfeng & Yin, Xiuli, 2022. "Kinetic and thermodynamic studies of biomass pseudo-components under thermo-oxidative degradation conditions using asymmetric function of Bi-Gaussian as deconvolution technique," Renewable Energy, Elsevier, vol. 188(C), pages 491-503.
    2. Escalante, Jamin & Chen, Wei-Hsin & Tabatabaei, Meisam & Hoang, Anh Tuan & Kwon, Eilhann E. & Andrew Lin, Kun-Yi & Saravanakumar, Ayyadurai, 2022. "Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Agnieszka Kijo-Kleczkowska & Adam Gnatowski, 2022. "Recycling of Plastic Waste, with Particular Emphasis on Thermal Methods—Review," Energies, MDPI, vol. 15(6), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:74:y:2013:i:c:p:75-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.