IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v69y2012icp1-9.html
   My bibliography  Save this article

Life cycle greenhouse gas emissions of hemp–lime wall constructions in the UK

Author

Listed:
  • Ip, Kenneth
  • Miller, Andrew

Abstract

Over half of the global raw materials are consumed in the construction of buildings and roads, their associated greenhouse gas emissions from excavation to final disposal are pivotal to the change in global climate. Hemp is a natural resource that has recently been used as a low environmental impact material in a number of composite products. In buildings, it is increasingly used with a lime base binder in wall constructions. There are limited data available to evaluate the environmental impact of this type of construction in the UK. This research aims to identify the processes and materials involved in the construction of hemp–lime walls and to establish their life cycle impact on climate change. The study follows assessment procedures and guidelines of international (ISO14040) and UK (PAS2050) standards. The functional unit defined for the hemp–lime wall construction is 1m square in area, 300mm thick with timber frame support inside. Primary data were collected for processes and materials that have no existing information. Other processes with impact data available from credible database were adapted in the assessment by taking into account the conditions and practice in the UK. Assessment was carried out using the SimaPro LCA tool over a lifetime of 100 years. Within the boundary and assumptions made, results showed the functional unit could sequestrate 82.7kg of carbon dioxide with a net life cycle reduction of greenhouse gas emission of 36.08kg CO2e.

Suggested Citation

  • Ip, Kenneth & Miller, Andrew, 2012. "Life cycle greenhouse gas emissions of hemp–lime wall constructions in the UK," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 1-9.
  • Handle: RePEc:eee:recore:v:69:y:2012:i:c:p:1-9
    DOI: 10.1016/j.resconrec.2012.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344912001620
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2012.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González-García, S. & Hospido, A. & Feijoo, G. & Moreira, M.T., 2010. "Life cycle assessment of raw materials for non-wood pulp mills: Hemp and flax," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 923-930.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Kosiński & Przemysław Brzyski & Maria Tunkiewicz & Zbigniew Suchorab & Damian Wiśniewski & Paweł Palczyński, 2022. "Thermal Properties of Hemp Shives Used as Insulation Material in Construction Industry," Energies, MDPI, vol. 15(7), pages 1-18, March.
    2. Arlen Zúniga & Rute Eires & Raphaele Malheiro, 2023. "New Lime-Based Hybrid Composite of Sugarcane Bagasse and Hemp as Aggregates," Resources, MDPI, vol. 12(5), pages 1-20, April.
    3. Yudi Wu & Helen X. Trejo & Gang Chen & Simeng Li, 2021. "Phytoremediation of contaminants of emerging concern from soil with industrial hemp (Cannabis sativa L.): a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14405-14435, October.
    4. Rotem Haik & Isaac A. Meir & Alva Peled, 2023. "Lime Hemp Concrete with Unfired Binders vs. Conventional Building Materials: A Comparative Assessment of Energy Requirements and CO 2 Emissions," Energies, MDPI, vol. 16(2), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egilmez, Gokhan & Kucukvar, Murat & Tatari, Omer & Bhutta, M. Khurrum S., 2014. "Supply chain sustainability assessment of the U.S. food manufacturing sectors: A life cycle-based frontier approach," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 8-20.
    2. Gallego, Alejandro & Hospido, Almudena & Moreira, María Teresa & Feijoo, Gumersindo, 2011. "Environmental assessment of dehydrated alfalfa production in Spain," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1005-1012.
    3. González-García, Sara & Baucells, Francesc & Feijoo, Gumersindo & Moreira, Maria Teresa, 2016. "Environmental performance of sorghum, barley and oat silage production for livestock feed using life cycle assessment," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 28-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:69:y:2012:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.