IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p708-d1028176.html
   My bibliography  Save this article

Lime Hemp Concrete with Unfired Binders vs. Conventional Building Materials: A Comparative Assessment of Energy Requirements and CO 2 Emissions

Author

Listed:
  • Rotem Haik

    (Energy Engineering Unit, Ben-Gurion University of the Negev, Be’er-Sheva 84105, Israel)

  • Isaac A. Meir

    (Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 84105, Israel)

  • Alva Peled

    (Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 84105, Israel)

Abstract

This work assesses the energy requirements and CO 2 emissions of a building made of Lime Hemp Concrete (LHC) with alternative unfired binders as lime replacement, compared to buildings made of standard LHC, and several conventional building materials. The assessment is based on ISO 14040, which deals with Life Cycle Assessment (LCA), and examines two aspects: energy, including pre-use phase Embodied Energy (EE), and use phase Operational Energy (OE); and CO 2 emissions, including pre-use phase Embodied Carbon (EC), and use phase Operational Carbon (OC). The EE and EC calculations are based on published databases, while OE and OC were obtained with EnergyPlus simulations. The assessment refers to a specific case study in an arid region, with extreme diurnal and seasonal fluctuations of temperature and relative humidity. Using LHC with 100% unfired binder as lime replacement was shown to save up to 90% of the total energy consumption and CO 2 emissions, as compared to conventional building materials. The findings of this research clearly demonstrate the high potential of LHC with unfired binders as lime replacement, which possesses the lowest energy requirements and CO 2 emissions, illustrating the potential for a building with significantly low environmental impact over its life cycle, i.e., when calculating both EE and EC, and OE and OC.

Suggested Citation

  • Rotem Haik & Isaac A. Meir & Alva Peled, 2023. "Lime Hemp Concrete with Unfired Binders vs. Conventional Building Materials: A Comparative Assessment of Energy Requirements and CO 2 Emissions," Energies, MDPI, vol. 16(2), pages 1-11, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:708-:d:1028176
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ip, Kenneth & Miller, Andrew, 2012. "Life cycle greenhouse gas emissions of hemp–lime wall constructions in the UK," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Wałach & Aleksandra Mach, 2023. "Effect of Concrete Mix Composition on Greenhouse Gas Emissions over the Full Life Cycle of a Structure," Energies, MDPI, vol. 16(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yudi Wu & Helen X. Trejo & Gang Chen & Simeng Li, 2021. "Phytoremediation of contaminants of emerging concern from soil with industrial hemp (Cannabis sativa L.): a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14405-14435, October.
    2. Arlen Zúniga & Rute Eires & Raphaele Malheiro, 2023. "New Lime-Based Hybrid Composite of Sugarcane Bagasse and Hemp as Aggregates," Resources, MDPI, vol. 12(5), pages 1-20, April.
    3. Piotr Kosiński & Przemysław Brzyski & Maria Tunkiewicz & Zbigniew Suchorab & Damian Wiśniewski & Paweł Palczyński, 2022. "Thermal Properties of Hemp Shives Used as Insulation Material in Construction Industry," Energies, MDPI, vol. 15(7), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:708-:d:1028176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.