IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v104y2015ipap311-316.html

An industrial ecology approach to municipal solid waste management: I. Methodology

Author

Listed:
  • Smith, R.L.
  • Sengupta, D.
  • Takkellapati, S.
  • Lee, C.C.

Abstract

Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes.

Suggested Citation

  • Smith, R.L. & Sengupta, D. & Takkellapati, S. & Lee, C.C., 2015. "An industrial ecology approach to municipal solid waste management: I. Methodology," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 311-316.
  • Handle: RePEc:eee:recore:v:104:y:2015:i:pa:p:311-316
    DOI: 10.1016/j.resconrec.2015.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092134491500083X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Smith, R.L. & Sengupta, D. & Takkellapati, S. & Lee, C.C., 2015. "An industrial ecology approach to municipal solid waste management: II. Case studies for recovering energy from the organic fraction of MSW," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 317-326.
    2. Fredrik Burström & Jouni Korhonen, 2001. "Municipalities and industrial ecology: reconsidering municipal environmental management," Sustainable Development, John Wiley & Sons, Ltd., vol. 9(1), pages 36-46.
    3. Marian R. Chertow, 2007. "“Uncovering” Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 11-30, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smith, R.L. & Sengupta, D. & Takkellapati, S. & Lee, C.C., 2015. "An industrial ecology approach to municipal solid waste management: II. Case studies for recovering energy from the organic fraction of MSW," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 317-326.
    2. Zhao, Rui & Xi, Beidou & Liu, Yiyun & Su, Jing & Liu, Silin, 2017. "Economic potential of leachate evaporation by using landfill gas: A system dynamics approach," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 74-84.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teresa Doménech & Michael Davies, 2011. "The role of Embeddedness in Industrial Symbiosis Networks: Phases in the Evolution of Industrial Symbiosis Networks," Business Strategy and the Environment, Wiley Blackwell, vol. 20(5), pages 281-296, July.
    2. Kristina Nyström & Murat Mirata, 2025. "Regenerative businesses' role in industrial symbiosis realisation," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(2), pages 2392-2405, April.
    3. Diogo Ferraz & Fernanda P. S. Falguera & Enzo B. Mariano & Dominik Hartmann, 2021. "Linking Economic Complexity, Diversification, and Industrial Policy with Sustainable Development: A Structured Literature Review," Sustainability, MDPI, vol. 13(3), pages 1-29, January.
    4. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    5. Sebastian Theis & Mark Poesch, 2024. "Mitigation bank applications for freshwater systems: Control mechanisms, project complexity, and caveats," PLOS ONE, Public Library of Science, vol. 19(2), pages 1-22, February.
    6. Di Leo, Senatro & Salvia, Monica, 2017. "Local strategies and action plans towards resource efficiency in South East Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 286-305.
    7. Eleonora Annunziata & Francesco Rizzi & Tiberio Daddi & Marco Frey, 2019. "Business models for interfirm energy cooperation in industrial parks: A possible taxonomy," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(2), pages 133-148.
    8. Sun, Lu & Li, Hong & Dong, Liang & Fang, Kai & Ren, Jingzheng & Geng, Yong & Fujii, Minoru & Zhang, Wei & Zhang, Ning & Liu, Zhe, 2017. "Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 78-88.
    9. João Azevedo & Juan Henriques & Marco Estrela & Rui Dias & Doroteya Vladimirova & Karen Miller & Muriel Iten, 2021. "Guidelines for Industrial Symbiosis—a Systematic Approach for Content Definition and Practical Recommendations for Implementation," Circular Economy and Sustainability, Springer, vol. 1(2), pages 507-523, September.
    10. Melike Kaya Akça & Mete Gündoğan & Gerçek Budak, 2025. "An Integrated Symbiotic Production System Design of Agro-Based Industries with Profit and Environmental Objectives," Sustainability, MDPI, vol. 17(14), pages 1-27, July.
    11. Doryn Negesa & Wei Cong & Lei Cheng & Lei Shi, 2022. "Development of eco‐industrial parks in Ethiopia: The case of Hawassa Industrial Park," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1078-1093, June.
    12. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    13. Fortuna, Lorena M. & Diyamandoglu, Vasil, 2015. "NYC WasteMatch – An online facilitated materials exchange as a tool for pollution prevention," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 122-131.
    14. João Pinto & Rui Boavida-Dias & Henrique A. Matos & João Azevedo, 2022. "Analysis of the Food Loss and Waste Valorisation of Animal By-Products from the Retail Sector," Sustainability, MDPI, vol. 14(5), pages 1-27, February.
    15. Taskhiri, Mohammad Sadegh & Tan, Raymond R. & Chiu, Anthony S.F., 2011. "Emergy-based fuzzy optimization approach for water reuse in an eco-industrial park," Resources, Conservation & Recycling, Elsevier, vol. 55(7), pages 730-737.
    16. Emilia Faria & Cristiane Barreto & Armando Caldeira-Pires & Jorge Alfredo Cerqueira Streit & Patricia Guarnieri, 2023. "Brazilian Circular Economy Pilot Project: Integrating Local Stakeholders’ Perception and Social Context in Industrial Symbiosis Analyses," Sustainability, MDPI, vol. 15(4), pages 1-28, February.
    17. Sourabh Jain & Jury Gualandris, 2023. "When does upcycling mitigate climate change? The case of wet spent grains and fruit and vegetable residues in Canada," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 522-534, April.
    18. Yang Liu & Peng Cheng & Li Hu, 2022. "How do justice and top management beliefs matter in industrial symbiosis collaboration: An exploratory study from China," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 891-906, June.
    19. Miguel A. Artacho-Ramírez & Bélgica Pacheco-Blanco & Víctor A. Cloquell-Ballester & Mónica Vicent & Irina Celades, 2020. "Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport’s Cluster as Case Study," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    20. Dimitri Petrik & Simon Hiller & Dominik Morar, 2025. "Digital platforms for circular economy: Empirical development of a taxonomy and archetypes," Electronic Markets, Springer;IIM University of St. Gallen, vol. 35(1), pages 1-25, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:104:y:2015:i:pa:p:311-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.