IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v666y2025ics0378437125001591.html
   My bibliography  Save this article

Tactical analysis of football games by vector calculus of last-pass performance

Author

Listed:
  • Morishita, Tenpei
  • Aruga, Yuji
  • Nakayama, Masao
  • Kijima, Akifumi
  • Shima, Hiroyuki

Abstract

The traditional approach to analyzing football (soccer) gameplay is to observe the movements of the ball and players closely to gain insight into the tactics and interactions between players. This study introduces a more advanced mathematical approach based on observational data to elucidate typical game patterns and tactical characteristics. Specifically, we applied vector analysis to the direction and length of the last-passes observed in numerous games and derived potential fields from the last-pass vector fields. Our approach allows for the visualization of natural pass flows along the gradient of the potential and the tactical characteristics of the last-passes that do not follow the gradient. Vector analysis also revealed the spontaneous formation of low-potential areas where passes were concentrated in front of the goal area, visualizing the typicality of crosses near the penalty area. Additionally, a detailed analysis of vector components not aligned with the gradient revealed the tactical characteristics of attacks or responses to defenders in the central and side areas. The outcomes of this study provide useful insights into tactical analysis and strategy optimization in matches, offering new perspectives in sports science.

Suggested Citation

  • Morishita, Tenpei & Aruga, Yuji & Nakayama, Masao & Kijima, Akifumi & Shima, Hiroyuki, 2025. "Tactical analysis of football games by vector calculus of last-pass performance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 666(C).
  • Handle: RePEc:eee:phsmap:v:666:y:2025:i:c:s0378437125001591
    DOI: 10.1016/j.physa.2025.130507
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125001591
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130507?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. Brillinger David R, 2007. "A Potential Function Approach to the Flow of Play in Soccer," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 3(1), pages 1-21, January.
    3. Narizuka, Takuma & Yamamoto, Ken & Yamazaki, Yoshihiro, 2014. "Statistical properties of position-dependent ball-passing networks in football games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 157-168.
    4. Keiko Yokoyama & Yuji Yamamoto, 2011. "Three People Can Synchronize as Coupled Oscillators during Sports Activities," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-8, October.
    5. Farkas, Illés J. & Vicsek, Tamás, 2006. "Initiating a Mexican wave: An instantaneous collective decision with both short- and long-range interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 830-840.
    6. Akifumi Kijima & Keiko Yokoyama & Hiroyuki Shima & Yuji Yamamoto, 2014. "Emergence of self-similarity in football dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(2), pages 1-6, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kosuke Toda & Masakiyo Teranishi & Keisuke Kushiro & Keisuke Fujii, 2022. "Evaluation of soccer team defense based on prediction models of ball recovery and being attacked: A pilot study," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-14, January.
    2. Murilo S Baptista & Hai-Peng Ren & Johen C M Swarts & Rodrigo Carareto & Henk Nijmeijer & Celso Grebogi, 2012. "Collective Almost Synchronisation in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    3. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    4. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    5. Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
    6. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    7. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    8. Krbálek, Milan & Hrabák, Pavel & Bukáček, Marek, 2018. "Pedestrian headways — Reflection of territorial social forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 38-49.
    9. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    10. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    11. Li, Zexu & Fang, Lei, 2024. "On the ideal gas law for crowds with high pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    12. Zheng, Xiaoping & Cheng, Yuan, 2011. "Conflict game in evacuation process: A study combining Cellular Automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1042-1050.
    13. Chen, Juan & Luo, Qian & Wang, Qiao & Lo, Jacqueline T.Y. & Ma, Jian, 2024. "Experimental study on individual and crowd movement features around obstacles with different shape and size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    14. Mohammed Mahmod Shuaib, 2016. "Modeling the Pedestrian Ability of Detecting Lanes and Lane Changing Behavior," Modern Applied Science, Canadian Center of Science and Education, vol. 10(7), pages 1-1, July.
    15. Chen, Kai & Zhao, Xiaodong & Huang, Yujie & Fang, Guoyu, 2025. "SocialTrans: Transformer based social intentions interaction for pedestrian trajectory prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 663(C).
    16. Shao, Zhi-Gang & Yang, Yan-Yan, 2015. "Effective strategies of collective evacuation from an enclosed space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 34-39.
    17. Andrea Cavagna & Antonio Culla & Xiao Feng & Irene Giardina & Tomas S. Grigera & Willow Kion-Crosby & Stefania Melillo & Giulia Pisegna & Lorena Postiglione & Pablo Villegas, 2022. "Marginal speed confinement resolves the conflict between correlation and control in collective behaviour," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    19. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    20. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:666:y:2025:i:c:s0378437125001591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.