IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v637y2024ics037843712400089x.html
   My bibliography  Save this article

Inferring the source of diffusion in networks under weak observation condition

Author

Listed:
  • Li, Ziqi
  • Shi, Chaoyi
  • Zhang, Qi
  • Chu, Tianguang

Abstract

Diffusion source inference in a fast and accurate way is of much importance for the control of the information spreading in networks. Typical models usually assume the infection times of the vertices in the observation set to be available, whereas it is sometimes difficult to observe the exact times because of the status invisibility of some vertices. In this paper, we propose a weak observation condition that requires merely the infection orders of the observers in a network. Under the weak observation condition, a statistical inference model based on the Monte Carlo sampling (MCS) method is further proposed to infer the real diffusion source from the source candidate set by evaluating the order correlation coefficient between the sampled infection sequence and the observed infection sequence. Experiments are worked out with both synthetic and real-world networks to show the effectiveness and availability of our method.

Suggested Citation

  • Li, Ziqi & Shi, Chaoyi & Zhang, Qi & Chu, Tianguang, 2024. "Inferring the source of diffusion in networks under weak observation condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
  • Handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s037843712400089x
    DOI: 10.1016/j.physa.2024.129581
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712400089X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Chaoyi & Zhang, Qi & Chu, Tianguang, 2022. "Source estimation in continuous-time diffusion networks via incomplete observation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    2. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    3. Xu, Shuaishuai & Teng, Cong & Zhou, Yinzuo & Peng, Junhao & Zhang, Yicheng & Zhang, Zi-Ke, 2019. "Identifying the diffusion source in complex networks with limited observers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    4. Ozbay, Feyza Altunbey & Alatas, Bilal, 2020. "Fake news detection within online social media using supervised artificial intelligence algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Li, Weihua & Tang, Shaoting & Pei, Sen & Yan, Shu & Jiang, Shijin & Teng, Xian & Zheng, Zhiming, 2014. "The rumor diffusion process with emerging independent spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 121-128.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    2. Park, Jinhee & Ahn, Hyeongjin & Kim, Dongjae & Park, Eunil, 2024. "GNN-IR: Examining graph neural networks for influencer recommendations in social media marketing," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    3. Shang, Ronghua & Zhang, Weitong & Jiao, Licheng & Stolkin, Rustam & Xue, Yu, 2017. "A community integration strategy based on an improved modularity density increment for large-scale networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 471-485.
    4. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    5. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    6. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    7. Ricardo S. Santos & Jose Soares & Pedro Carmona Marques & Helena V. G. Navas & José Moleiro Martins, 2021. "Integrating Business, Social, and Environmental Goals in Open Innovation through Partner Selection," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    8. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    9. Shenshen Bai & Longjie Li & Jianjun Cheng & Shijin Xu & Xiaoyun Chen, 2018. "Predicting Missing Links Based on a New Triangle Structure," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    10. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    11. Xia, Yongxiang & Pang, Wenbo & Zhang, Xuejun, 2021. "Mining relationships between performance of link prediction algorithms and network structure," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    12. Li, Jingjing & Zhang, Yumei & Man, Jiayu & Zhou, Yun & Wu, Xiaojun, 2017. "SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 740-749.
    13. Muhammad Mudassar Yamin & Mohib Ullah & Habib Ullah & Basel Katt & Mohammad Hijji & Khan Muhammad, 2022. "Mapping Tools for Open Source Intelligence with Cyber Kill Chain for Adversarial Aware Security," Mathematics, MDPI, vol. 10(12), pages 1-25, June.
    14. Qiaoran Yang & Zhiliang Dong & Yichi Zhang & Man Li & Ziyi Liang & Chao Ding, 2021. "Who Will Establish New Trade Relations? Looking for Potential Relationship in International Nickel Trade," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    15. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Li, Wei & Huang, Ce & Wang, Miao & Chen, Xi, 2017. "Stepping community detection algorithm based on label propagation and similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 145-155.
    17. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    18. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    19. Paluch, Robert & Gajewski, Łukasz G. & Suchecki, Krzysztof & Hołyst, Janusz A., 2021. "Impact of interactions between layers on source localization in multilayer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    20. Huo, Liang’an & Jiang, Jiehui & Gong, Sixing & He, Bing, 2016. "Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 228-240.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s037843712400089x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.