IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v627y2023ics0378437123006957.html
   My bibliography  Save this article

New label propagation algorithms based on the law of universal gravitation for community detection

Author

Listed:
  • Li, Wencong
  • Wang, Jihui
  • Cai, Jiansheng

Abstract

Many networks in reality are undirected networks, such as the cooperative network, the network of protein interactions in biomedicine, etc. Discovering community structure in the complex network is an important aspect of network analysis. We propose three enhanced label propagation algorithms based on the law of universal gravitation and give two methods (the number of triangles and the algorithm of random walk with restart) that replace the distance in the traditional physical meaning to reduce the time complexity of our algorithms. The obtained attraction between nodes is used as the weight of the edge to propagate labels. Moreover, we propose a new label propagation rule to address the shortcoming of the LPA algorithm in the label propagation process. Based on the two methods mentioned above that replace the distance, we obtain the LPA_T and LPA_R algorithms, respectively. Additionally, we consider combining these two methods by setting the parameter θ to form a new enhanced label propagation algorithm (LPA_P). The effectiveness of our algorithms in finding community structure is tested on real and synthetic networks, and the results show that our algorithms can effectively detect communities on networks. Experiments also show that the proposed algorithms are close to linear time complexity, have better accuracy than LPA, and perform satisfactorily in running time.

Suggested Citation

  • Li, Wencong & Wang, Jihui & Cai, Jiansheng, 2023. "New label propagation algorithms based on the law of universal gravitation for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
  • Handle: RePEc:eee:phsmap:v:627:y:2023:i:c:s0378437123006957
    DOI: 10.1016/j.physa.2023.129140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123006957
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    2. Wang, Benyu & Gu, Yijun & Zheng, Diwen, 2022. "Community detection in error-prone environments based on particle cooperation and competition with distance dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    3. Chen, Kaiqi & Bi, Weihong, 2019. "A new genetic algorithm for community detection using matrix representation method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Luo, Mengdi & Xu, Ying, 2022. "Community detection via network node vector label propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    5. Agrawal, Smita & Patel, Atul, 2021. "SAG Cluster: An unsupervised graph clustering based on collaborative similarity for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiansheng Cai & Wencong Li & Xiaodong Zhang & Jihui Wang, 2024. "New Random Walk Algorithm Based on Different Seed Nodes for Community Detection," Mathematics, MDPI, vol. 12(15), pages 1-21, July.
    2. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    3. Perc, Matjaž, 2010. "Zipf’s law and log-normal distributions in measures of scientific output across fields and institutions: 40 years of Slovenia’s research as an example," Journal of Informetrics, Elsevier, vol. 4(3), pages 358-364.
    4. Ding, Waverly & Choi, Emily, 2008. "Divergent Paths or Stepping Stones: A Comparison of Scientists’ Advising and Founding Activities," Institute for Research on Labor and Employment, Working Paper Series qt4907j25p, Institute of Industrial Relations, UC Berkeley.
    5. He, Xuan & Zhao, Hai & Cai, Wei & Liu, Zheng & Si, Shuai-Zong, 2014. "Earthquake networks based on space–time influence domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 175-184.
    6. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    7. Weimao Ke, 2013. "A fitness model for scholarly impact analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 981-998, March.
    8. Rodrigo Dorantes-Gilardi & Aurora A. Ramírez-Álvarez & Diana Terrazas-Santamaría, 2023. "Is there a differentiated gender effect of collaboration with super-cited authors? Evidence from junior researchers in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2317-2336, April.
    9. Klabunde, Anna, 2014. "Computational Economic Modeling of Migration," Ruhr Economic Papers 471, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    10. Fenner, Trevor & Levene, Mark & Loizou, George, 2005. "A stochastic evolutionary model exhibiting power-law behaviour with an exponential cutoff," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 641-656.
    11. Pedro Albarrán & Juan A. Crespo & Ignacio Ortuño & Javier Ruiz-Castillo, 2011. "The skewness of science in 219 sub-fields and a number of aggregates," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 385-397, August.
    12. Fan Jiang & Niancai Liu, 2018. "The hierarchical status of international academic awards in social sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 2091-2115, December.
    13. Mingtang Li & Giacomo Livan & Simone Righi, 2024. "Breaking down the relationship between disruption scores and citation counts," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-17, December.
    14. Milojević, Staša & Radicchi, Filippo & Bar-Ilan, Judit, 2017. "Citation success index − An intuitive pair-wise journal comparison metric," Journal of Informetrics, Elsevier, vol. 11(1), pages 223-231.
    15. J. Esquivel-Gómez & R. E. Balderas-Navarro & P. D. Arjona-Villicaña & P. Castillo-Castillo & O. Rico-Trejo & J. Acosta-Elias, 2017. "On the Emergence of Islands in Complex Networks," Complexity, Hindawi, vol. 2017, pages 1-10, January.
    16. Seyed Soheil Hosseini & Nick Wormald & Tianhai Tian, 2019. "A Weight-based Information Filtration Algorithm for Stock-Correlation Networks," Papers 1904.06007, arXiv.org.
    17. Carvalho, Rui & Penn, Alan, 2004. "Scaling and universality in the micro-structure of urban space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 539-547.
    18. Colavizza, Giovanni & Franceschet, Massimo, 2016. "Clustering citation histories in the Physical Review," Journal of Informetrics, Elsevier, vol. 10(4), pages 1037-1051.
    19. Maziar Montazerian & Edgar Dutra Zanotto & Hellmut Eckert, 2020. "Prolificacy and visibility versus reputation in the hard sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 207-221, April.
    20. Tol, Richard S.J., 2013. "The Matthew effect for cohorts of economists," Journal of Informetrics, Elsevier, vol. 7(2), pages 522-527.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:627:y:2023:i:c:s0378437123006957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.