IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v607y2022ics0378437122007774.html
   My bibliography  Save this article

Relatively important nodes mining algorithm based on community detection and biased random walk with restart

Author

Listed:
  • Liu, Qian
  • Wang, Jian
  • Zhao, Zhidan
  • Zhao, Na

Abstract

As modern network communication technology rapidly develops in recent years, complex networks have become a hot multidisciplinary research field. In this field, relatively important nodes mining is an emerging research topic with theoretical significance and application value. However, most researchers in the field of complex networks focus on sorting the global information in the network. Existing relatively important nodes mining algorithms commonly focus on the structural characteristics of the network and do not take into account the influence of community information on relatively important nodes mining. This paper addresses these problems by proposing a relatively important nodes mining algorithm based on community detection and biased random walk with restart (CDBRWR). This approach integrates the community information of the network into the mining of relatively important nodes for the first time and recommends a new biased random walk strategy with restart to realize the accurate and efficient mining of relatively important nodes in various networks. The performance of the proposed algorithm is examined through experimental verification and analysis of real network datasets. Results show that the CDBRWR algorithm outperforms other comparative algorithms in precision, recall, and AUC (area under the curve).

Suggested Citation

  • Liu, Qian & Wang, Jian & Zhao, Zhidan & Zhao, Na, 2022. "Relatively important nodes mining algorithm based on community detection and biased random walk with restart," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
  • Handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007774
    DOI: 10.1016/j.physa.2022.128219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122007774
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    2. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    3. Annamaria Ficara & Giacomo Fiumara & Salvatore Catanese & Pasquale De Meo & Xiaoyang Liu, 2022. "The Whole Is Greater than the Sum of the Parts: A Multilayer Approach on Criminal Networks," Future Internet, MDPI, vol. 14(5), pages 1-21, April.
    4. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Exploring node importance evolution of weighted complex networks in urban rail transit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    5. Gholami, Maryam & Sheikhahmadi, Amir & Khamforoosh, Keyhan & Jalili, Mahdi, 2022. "Overlapping community detection in networks based on Neutrosophic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    6. Aghaalizadeh, Saeid & Afshord, Saeid Taghavi & Bouyer, Asgarali & Anari, Babak, 2021. "A three-stage algorithm for local community detection based on the high node importance ranking in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    7. Wu, Yipeng & Chen, Zhilong & Zhao, Xudong & Liu, Ying & Zhang, Ping & Liu, Yajiao, 2021. "Robust analysis of cascading failures in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    8. Nasiri, Elahe & Berahmand, Kamal & Li, Yuefeng, 2021. "A new link prediction in multiplex networks using topologically biased random walks," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    9. Zhou, Yinzuo & Wu, Chencheng & Tan, Lulu, 2021. "Biased random walk with restart for link prediction with graph embedding method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    10. Shang, Ronghua & Zhang, Weitong & Zhang, Jingwen & Feng, Jie & Jiao, Licheng, 2022. "Local community detection based on higher-order structure and edge information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    11. Lucia Cavallaro & Annamaria Ficara & Pasquale De Meo & Giacomo Fiumara & Salvatore Catanese & Ovidiu Bagdasar & Wei Song & Antonio Liotta, 2020. "Disrupting resilient criminal networks through data analysis: The case of Sicilian Mafia," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-22, August.
    12. Jing Zhao & Ting-Hong Yang & Yongxu Huang & Petter Holme, 2011. "Ranking Candidate Disease Genes from Gene Expression and Protein Interaction: A Katz-Centrality Based Approach," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingshuo Nie & Dongming Chen & Dongqi Wang, 2022. "Graph Embedding Method Based on Biased Walking for Link Prediction," Mathematics, MDPI, vol. 10(20), pages 1-13, October.
    2. Yangyang Meng & Xiaofei Zhao & Jianzhong Liu & Qingjie Qi, 2023. "Dynamic Influence Analysis of the Important Station Evolution on the Resilience of Complex Metro Network," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    3. Kazemzadeh, Farzaneh & Safaei, Ali Asghar & Mirzarezaee, Mitra, 2022. "Influence maximization in social networks using effective community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    5. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Zhikui Chen & Yin Peng & Shuo Yu & Chen Cao & Feng Xia, 2022. "Subgraph Adaptive Structure-Aware Graph Contrastive Learning," Mathematics, MDPI, vol. 10(17), pages 1-18, August.
    7. Chen, Junlan & Pu, Ziyuan & Guo, Xiucheng & Cao, Jieyu & Zhang, Fang, 2023. "Multiperiod metro timetable optimization based on the complex network and dynamic travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    8. Jiaping Cao & Tianyang Lei & Jichao Li & Jiang Jiang, 2023. "A Novel Link Prediction Method for Social Multiplex Networks Based on Deep Learning," Mathematics, MDPI, vol. 11(7), pages 1-19, April.
    9. Niles Breuer & Federico Varese, 2023. "The Structure of Trade-type and Governance-type Organized Crime Groups: A Network Study," The British Journal of Criminology, Centre for Crime and Justice Studies, vol. 63(4), pages 867-888.
    10. Yuliansyah, Herman & Othman, Zulaiha Ali & Bakar, Azuraliza Abu, 2023. "A new link prediction method to alleviate the cold-start problem based on extending common neighbor and degree centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    11. Nikzad-Khasmakhi, N. & Balafar, M.A. & Reza Feizi-Derakhshi, M. & Motamed, Cina, 2021. "BERTERS: Multimodal representation learning for expert recommendation system with transformers and graph embeddings," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    12. Wenjun Li & Ting Li & Kamal Berahmand, 2023. "An effective link prediction method in multiplex social networks using local random walk towards dependable pathways," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-27, January.
    13. Ma, Min & Hu, Dawei & Chien, Steven I-Jy & Liu, Jie & Yang, Xing & Ma, Zhuanglin, 2022. "Evolution assessment of urban rail transit networks: A case study of Xi’an, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    14. Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
    15. Juanjuan Luo & Teng Fei & Meng Tian & Yifei Liu & Meng Bian, 2023. "Sensitivity metrics of complex network based on co-occurrence truth table: exemplified by a high-speed rail network," Journal of Geographical Systems, Springer, vol. 25(4), pages 519-538, October.
    16. Zhang, Yifan & Ng, S. Thomas, 2021. "Unveiling the rich-club phenomenon in urban mobility networks through the spatiotemporal characteristics of passenger flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    17. Lin, Hai & Wang, Jingcheng, 2022. "Pinning synchronization of complex networks with time-varying outer coupling and nonlinear multiple time-varying delay coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    18. Yuping Jin & Yanbin Yang & Wei Liu, 2022. "Finding Global Liquefied Natural Gas Potential Trade Relations Based on Improved Link Prediction," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    19. Xiao, Yuanhao & Zhao, Xudong & Wu, Yipeng & Chen, Zhilong & Gong, Huadong & Zhu, Lihong & Liu, Ying, 2022. "Seismic resilience assessment of urban interdependent lifeline networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    20. Jabari Lotf, Jalil & Abdollahi Azgomi, Mohammad & Ebrahimi Dishabi, Mohammad Reza, 2022. "An improved influence maximization method for social networks based on genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.