IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v581y2021ics0378437121004829.html
   My bibliography  Save this article

Finite-time analysis for networked predictive control systems with induced time delays and data packet dropouts

Author

Listed:
  • Jiang, Tingting
  • Zhang, Yuping
  • Zeng, Yong
  • Zhong, Shouming
  • Shi, Kaibo
  • Cai, Xiao

Abstract

This paper is concerned with the problem of finite-time stability (FTS) and finite-time boundedness (FTB) issues of networked predictive control systems (NPCs) with induced time delays and data packet dropouts. First, a new networked predictive control (NPC) scheme is established based on the designed observer and prediction strategy, and a model of NPCs is obtained. Second, in order to handle different time delays and data packet dropouts, an improved method of combining matrix singular value decomposition (SVD) with multivariate presupposition is proposed. Third, an observer-based predictive controller is designed to make the closed loop system FTS and FTB via finite-time theory, then the induced time delays and data packet dropouts are disposed actively. In addition, new sufficient conditions are obtained, which can guarantee the desired controller and observer gain matrices be subsequently acquired by solving some linear matrix inequalities (LMIs). Finally, two numerical examples are illustrated to validate the effectiveness of the theoretical findings.

Suggested Citation

  • Jiang, Tingting & Zhang, Yuping & Zeng, Yong & Zhong, Shouming & Shi, Kaibo & Cai, Xiao, 2021. "Finite-time analysis for networked predictive control systems with induced time delays and data packet dropouts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
  • Handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121004829
    DOI: 10.1016/j.physa.2021.126209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121004829
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Feng & Shen, Hao & Chen, Mengshen & Kong, Qingkai, 2015. "Non-fragile finite-time l2−l∞ state estimation for discrete-time Markov jump neural networks with unreliable communication links," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 467-481.
    2. Yeguo Sun & Jin Xu, 2012. "Finite-Time Boundedness and Stabilization of Networked Control Systems with Time Delay," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-12, July.
    3. Gu, Yang & Shen, Mouquan & Ren, Yuesheng & Liu, Hongxia, 2020. "H∞ finite-time control of unknown uncertain systems with actuator failure," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    4. Cai, Xiao & Zhong, Shouming & Wang, Jun & Shi, Kaibo, 2020. "Robust H∞ control for uncertain delayed T-S fuzzy systems with stochastic packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    5. Liguang Wan & Xisheng Zhan & Hongliang Gao & Qingsheng Yang & Tao Han & Mengjun Ye, 2019. "Multiple asymptotical stability analysis for fractional-order neural networks with time delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 50(10), pages 2063-2076, July.
    6. Wu, Yongbao & Guo, Haihua & Li, Wenxue, 2020. "Finite-time stabilization of stochastic coupled systems on networks with Markovian switching via feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Tang, Ze & Park, Ju H. & Lee, Tae H., 2016. "Dynamic output-feedback-based H∞ design for networked control systems with multipath packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 121-133.
    8. Dong, Shiyu & Zhu, Hong & Zhong, Shouming & Shi, Kaibo & Liu, Yajuan, 2021. "New study on fixed-time synchronization control of delayed inertial memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    9. Luo, Yiping & Yao, Yuejie & Cheng, Zifeng & Xiao, Xing & Liu, Hanyu, 2021. "Event-triggered control for coupled reaction–diffusion complex network systems with finite-time synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halder, Kaushik & Panda, Deepak Kumar & Das, Saptarshi & Das, Sourav & Gupta, Amitava, 2022. "Specified QoS based networked observer and PI controller design with disturbance and noise rejection under random packet dropout," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Yi & Wang, Pengjun & Heidari, Ali Asghar & Chen, Huiling & HamzaTurabieh, & Mafarja, Majdi, 2022. "Random reselection particle swarm optimization for optimal design of solar photovoltaic modules," Energy, Elsevier, vol. 239(PA).
    2. Liu, Yun & Heidari, Ali Asghar & Ye, Xiaojia & Liang, Guoxi & Chen, Huiling & He, Caitou, 2021. "Boosting slime mould algorithm for parameter identification of photovoltaic models," Energy, Elsevier, vol. 234(C).
    3. Li, Xing-Yu & Wu, Kai-Ning & Liu, Xiao-Zhen, 2023. "Mittag–Leffler stabilization for short memory fractional reaction-diffusion systems via intermittent boundary control," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    4. Zou, Cong & Li, Bing & Liu, Feiyang & Xu, Bingrui, 2022. "Event-Triggered μ-state estimation for Markovian jumping neural networks with mixed time-delays," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    5. Luo, Jinnan & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Chen, Hao & Gu, Xian-Ming & Wang, Wenqin, 2017. "Non-fragile asynchronous H∞ control for uncertain stochastic memory systems with Bernoulli distribution," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 109-128.
    6. Lee, Tae H. & Park, Ju H. & Jung, Hoyoul, 2018. "Network-based H∞ state estimation for neural networks using imperfect measurement," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 205-214.
    7. Gao, Shang & Peng, Keyu & Zhang, Chunrui, 2021. "Existence and global exponential stability of periodic solutions for feedback control complex dynamical networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Jiao, Shiyu & Shen, Hao & Wei, Yunliang & Huang, Xia & Wang, Zhen, 2018. "Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 338-350.
    9. Song, Jia-Sheng & Chang, Xiao-Heng, 2020. "H∞ controller design of networked control systems with a new quantization structure," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    10. Ma, Zheng & Song, Jiasheng & Zhou, Jianping, 2022. "Reliable event-based dissipative filter design for discrete-time system with dynamic quantization and sensor fault," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    11. Li, Xin & Wei, Guoliang & Ding, Derui, 2021. "Distributed resilient interval estimation for sensor networks under aperiodic denial-of-service attacks and adaptive event-triggered protocols," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    12. Song, Xinmin & Duan, Zhenhua & Park, Ju H., 2016. "Linear optimal estimation for discrete-time systems with measurement-delay and packet dropping," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 115-124.
    13. Liu, Fan & Chen, Mou & Li, Tao, 2022. "Resilient H∞ control for uncertain turbofan linear switched systems with hybrid switching mechanism and disturbance observer," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    14. Hongkun Ma & Chengdong Yang, 2022. "Exponential Synchronization of Hyperbolic Complex Spatio-Temporal Networks with Multi-Weights," Mathematics, MDPI, vol. 10(14), pages 1-11, July.
    15. Lu, Jianquan & Guo, Xing & Huang, Tingwen & Wang, Zhen, 2019. "Consensus of signed networked multi-agent systems with nonlinear coupling and communication delays," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 153-162.
    16. Wu, Yanqi & Zhang, Junfeng & Lin, Peng, 2022. "Non-fragile hybrid-triggered control of networked positive switched systems with cyber attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    17. Serrano, Fernando E. & Ghosh, Dibakar, 2022. "Robust stabilization and synchronization in a network of chaotic systems with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    18. Li, Feng & Song, Shuai & Zhao, Jianrong & Xu, Shengyuan & Zhang, Zhengqiang, 2019. "Synchronization control for Markov jump neural networks subject to HMM observation and partially known detection probabilities," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 1-13.
    19. Li, Yueyang & Liu, Shuai & Zhong, Maiying & Ding, Steven X., 2018. "State estimation for stochastic discrete-time systems with multiplicative noises and unknown inputs over fading channels," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 116-130.
    20. Saravanakumar, Ramasamy & Datta, Rupak & Cao, Yang, 2022. "New insights on fuzzy sampled-data stabilization of delayed nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121004829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.