IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v275y2016icp121-133.html
   My bibliography  Save this article

Dynamic output-feedback-based H∞ design for networked control systems with multipath packet dropouts

Author

Listed:
  • Tang, Ze
  • Park, Ju H.
  • Lee, Tae H.

Abstract

This paper is devoted to the stability of networked control system with time-varying delays. A dynamic output feedback controller is designed to realize H∞ control of the networked system with the H∞ performance attenuation level γ. Since the frequent occurrence of packet dropouts and communication delays which all could degrade the performance of system or even cause system instability, we consider the networked control system with both input and output packet dropouts and bidirectional time-varying communication delays. Some sufficient conditions are obtained to grantee asymptotic stability of the system in view of Schur complement and singular values decomposition of matrix. Afterwards, intensive analysis is carried out to present the existence of admissible dynamic output feedback controller by applying an appropriate weighting method which introduces slack matrices variables. What is more, a numerical example is presented to illustrate the validity of theoretical analysis.

Suggested Citation

  • Tang, Ze & Park, Ju H. & Lee, Tae H., 2016. "Dynamic output-feedback-based H∞ design for networked control systems with multipath packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 121-133.
  • Handle: RePEc:eee:apmaco:v:275:y:2016:i:c:p:121-133
    DOI: 10.1016/j.amc.2015.11.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315015398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.11.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Xiao-Heng & Xiong, Jun & Park, Ju H., 2016. "Fuzzy robust dynamic output feedback control of nonlinear systems with linear fractional parametric uncertainties," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 213-225.
    2. Zhang, Zhi-Ming & He, Yong & Wu, Min & Wang, Qing-Guo, 2017. "Exponential synchronization of chaotic neural networks with time-varying delay via intermittent output feedback approach," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 121-132.
    3. Lu, Jianquan & Guo, Xing & Huang, Tingwen & Wang, Zhen, 2019. "Consensus of signed networked multi-agent systems with nonlinear coupling and communication delays," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 153-162.
    4. Chen, Xiaoming & Chen, Mou & Qi, Wenhai & Shen, Jun, 2016. "Dynamic output-feedback control for continuous-time interval positive systems under L1 performance," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 48-59.
    5. Ma, Zheng & Song, Jiasheng & Zhou, Jianping, 2022. "Reliable event-based dissipative filter design for discrete-time system with dynamic quantization and sensor fault," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    6. Jiang, Tingting & Zhang, Yuping & Zeng, Yong & Zhong, Shouming & Shi, Kaibo & Cai, Xiao, 2021. "Finite-time analysis for networked predictive control systems with induced time delays and data packet dropouts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    7. Song, Jia-Sheng & Chang, Xiao-Heng, 2020. "H∞ controller design of networked control systems with a new quantization structure," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    8. Xiao, Xiaoqing & Park, Ju H. & Zhou, Lei, 2018. "Event-triggered control of discrete-time switched linear systems with packet losses," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 344-352.
    9. Malik, Saddam Hussain & Tufail, Muhammad & Rehan, Muhammad & Ahmed, Shakeel, 2022. "State and output feedback local control schemes for nonlinear discrete-time 2-D Roesser systems under saturation, quantization and slope restricted input," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    10. Luo, Jinnan & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Chen, Hao & Gu, Xian-Ming & Wang, Wenqin, 2017. "Non-fragile asynchronous H∞ control for uncertain stochastic memory systems with Bernoulli distribution," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 109-128.
    11. Zhou, Jiamu & Dong, Hailing & Feng, Jianwen, 2017. "Event-triggered communication for synchronization of Markovian jump delayed complex networks with partially unknown transition rates," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 617-629.
    12. Zhai, Shidong & Zhou, Yuan & Li, Qingdu, 2017. "Synchronization for coupled nonlinear systems with disturbances in input and measured output," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 227-237.
    13. Nagamani, G. & Ramasamy, S., 2016. "Stochastic dissipativity and passivity analysis for discrete-time neural networks with probabilistic time-varying delays in the leakage term," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 237-257.
    14. Li, Yueyang & Liu, Shuai & Zhong, Maiying & Ding, Steven X., 2018. "State estimation for stochastic discrete-time systems with multiplicative noises and unknown inputs over fading channels," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 116-130.
    15. Kwon, W. & Koo, Baeyoung & Lee, S.M., 2018. "Novel Lyapunov–Krasovskii functional with delay-dependent matrix for stability of time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 149-157.
    16. Shi, Xuanxuan & Shen, Mouquan, 2019. "A new approach to feedback feed-forward iterative learning control with random packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 399-412.
    17. Song, Xinmin & Duan, Zhenhua & Park, Ju H., 2016. "Linear optimal estimation for discrete-time systems with measurement-delay and packet dropping," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 115-124.
    18. Yu, Peilin & Deng, Feiqi, 2022. "Stabilization analysis of Markovian asynchronous switched systems with input delay and Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 422(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:275:y:2016:i:c:p:121-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.