IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v572y2021ics0378437121001266.html
   My bibliography  Save this article

Mobility driven coexistence of living organisms

Author

Listed:
  • de Oliveira, B.F.
  • de Moraes, M.V.
  • Bazeia, D.
  • Szolnoki, A.

Abstract

We propose a minimal off-lattice model of living organisms where just a very few dynamical rules of growth are assumed. The stable coexistence of many clusters is detected when we replace the global restriction rule by a locally applied one. A rich variety of evolving patterns is revealed where players movement has a decisive role on the evolutionary outcome. For example, intensive individual mobility may jeopardize the survival of the population, but if we increase players movement further then it can save the population. Notably, the collective drive of population members is capable to compensate the negative consequence of intensive movement and keeps the system alive. When the drive becomes biased then the resulting unidirectional flow alters the stable pattern and produce a stripe-like state instead of the previously observed hexagonal arrangement of clusters. Interestingly, the rotation of stripes can be flipped if the individual movement exceeds a threshold value.

Suggested Citation

  • de Oliveira, B.F. & de Moraes, M.V. & Bazeia, D. & Szolnoki, A., 2021. "Mobility driven coexistence of living organisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
  • Handle: RePEc:eee:phsmap:v:572:y:2021:i:c:s0378437121001266
    DOI: 10.1016/j.physa.2021.125854
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121001266
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.125854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Alberto Javarone, 2016. "Statistical physics of the spatial Prisoner’s Dilemma with memory-aware agents," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-6, February.
    2. Marco Alberto Javarone & Daniele Marinazzo, 2017. "Evolutionary dynamics of group formation," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-10, November.
    3. Tamás Vicsek, 2010. "Closing in on evaders," Nature, Nature, vol. 466(7302), pages 43-44, July.
    4. Marco Alberto Javarone, 2016. "Statistical physics of the spatial Prisoner’s Dilemma with memory-aware agents," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-6, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Junpyo, 2022. "Effect of external migration on biodiversity in evolutionary dynamics of coupled cyclic competitions," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Zhao, Xiaowei & Xia, Haoxiang, 2023. "Information accuracy of migration and imitation influences the evolution of cooperation in spatial prisoner's dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Navidad Maeso, David & Patriarca, Marco & Heinsalu, Els, 2022. "Influence of invasion on natural selection in dispersal-structured populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. Szolnoki, Attila & Perc, Matjaž, 2023. "Oppressed species can form a winning pair in a multi-species ecosystem," Applied Mathematics and Computation, Elsevier, vol. 438(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander G. Ginsberg & Feng Fu, 2018. "Evolution of Cooperation in Public Goods Games with Stochastic Opting-Out," Games, MDPI, vol. 10(1), pages 1-27, December.
    2. Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Migration based on environment comparison promotes cooperation in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    3. Javarone, Marco Alberto, 2016. "An evolutionary strategy based on partial imitation for solving optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 262-269.
    4. Chen, Wei & Wang, Jianwei & Yu, Fengyuan & He, Jialu & Xu, Wenshu & Wang, Rong, 2021. "Effects of emotion on the evolution of cooperation in a spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    5. Ji, Jiezhou & Pan, Qiuhui & Zhu, Wenqiang & He, Mingfeng, 2023. "The influence of own historical information and environmental historical information on the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    6. Cheng, Jiangjiang & Mei, Wenjun & Su, Wei & Chen, Ge, 2023. "Evolutionary games on networks: Phase transition, quasi-equilibrium, and mathematical principles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    7. André Barreira Da Silva Rocha, 2017. "Cooperation In The Well-Mixed Two-Population Snowdrift Game With Punishment Enforced Through Different Mechanisms," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(04n05), pages 1-21, June.
    8. Shu, Feng, 2020. "A win-switch-lose-stay strategy promotes cooperation in the evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    9. Wu, Yu’e & Zhang, Zhipeng & Chang, Shuhua, 2019. "Reciprocal reward promotes the evolution of cooperation in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 230-236.
    10. Marco Alberto Javarone, 2016. "Modeling Poker Challenges by Evolutionary Game Theory," Games, MDPI, vol. 7(4), pages 1-10, December.
    11. Lucas Wardil & Marco Antonio Amaral, 2017. "Cooperation in Public Goods Games: Stay, But Not for Too Long," Games, MDPI, vol. 8(3), pages 1-10, August.
    12. Shi, Zhenyu & Wei, Wei & Zheng, Hongwei & Zheng, Zhiming, 2023. "Bidirectional supervision: An effective method to suppress corruption and defection under the third party punishment mechanism of donation games," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    13. Garcia, Amanda & Obeidi, Amer & Hipel, Keith W., 2018. "Strategic advice for decision-making under conflict based on observed behaviour," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 96-104.
    14. Shu, Feng & Li, Min & Liu, Xingwen, 2019. "Memory mechanism with weighting promotes cooperation in the evolutionary games," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 17-24.
    15. Wang, Xiaofeng & Perc, Matjaž, 2021. "Emergence of cooperation in spatial social dilemmas with expulsion," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    16. Shu, Feng & Liu, Yaojun & Liu, Xingwen & Zhou, Xiaobing, 2019. "Memory-based conformity enhances cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 480-490.
    17. Quan, Ji & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Evidential reasoning based on imitation and aspiration information in strategy learning promotes cooperation in optional spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    18. Ye, Wenxing & Feng, Weiying & Lü, Chen & Fan, Suohai, 2017. "Memory-based prisoner’s dilemma game with conditional selection on networks," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 31-37.
    19. Serge Galam & Marco Alberto Javarone, 2016. "Modeling Radicalization Phenomena in Heterogeneous Populations," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.
    20. Yuan, Hairui & Meng, Xinzhu, 2022. "Replicator dynamics of the Hawk-Dove game with different stochastic noises in infinite populations," Applied Mathematics and Computation, Elsevier, vol. 430(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:572:y:2021:i:c:s0378437121001266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.