IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v89y2016i2d10.1140_epjb_e2016-60901-5.html
   My bibliography  Save this article

Statistical physics of the spatial Prisoner’s Dilemma with memory-aware agents

Author

Listed:
  • Marco Alberto Javarone

    (University of Cagliari
    DUMAS – Department of Humanities and Social Sciences, University of Sassari)

Abstract

We introduce an analytical model to study the evolution towards equilibrium in spatial games, with ‘memory-aware’ agents, i.e., agents that accumulate their payoff over time. In particular, we focus our attention on the spatial Prisoner’s Dilemma, as it constitutes an emblematic example of a game whose Nash equilibrium is defection. Previous investigations showed that, under opportune conditions, it is possible to reach, in the evolutionary Prisoner’s Dilemma, an equilibrium of cooperation. Notably, it seems that mechanisms like motion may lead a population to become cooperative. In the proposed model, we map agents to particles of a gas so that, on varying the system temperature, they randomly move. In doing so, we are able to identify a relation between the temperature and the final equilibrium of the population, explaining how it is possible to break the classical Nash equilibrium in the spatial Prisoner’s Dilemma when considering agents able to increase their payoff over time. Moreover, we introduce a formalism to study order-disorder phase transitions in these dynamics. As result, we highlight that the proposed model allows to explain analytically how a population, whose interactions are based on the Prisoner’s Dilemma, can reach an equilibrium far from the expected one; opening also the way to define a direct link between evolutionary game theory and statistical physics.

Suggested Citation

  • Marco Alberto Javarone, 2016. "Statistical physics of the spatial Prisoner’s Dilemma with memory-aware agents," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-6, February.
  • Handle: RePEc:spr:eurphb:v:89:y:2016:i:2:d:10.1140_epjb_e2016-60901-5
    DOI: 10.1140/epjb/e2016-60901-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2016-60901-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2016-60901-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. André Barreira Da Silva Rocha, 2017. "Cooperation In The Well-Mixed Two-Population Snowdrift Game With Punishment Enforced Through Different Mechanisms," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(04n05), pages 1-21, June.
    2. Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Migration based on environment comparison promotes cooperation in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    3. Garcia, Amanda & Obeidi, Amer & Hipel, Keith W., 2018. "Strategic advice for decision-making under conflict based on observed behaviour," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 96-104.
    4. Ye, Wenxing & Feng, Weiying & Lü, Chen & Fan, Suohai, 2017. "Memory-based prisoner’s dilemma game with conditional selection on networks," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 31-37.
    5. Cheng, Jiangjiang & Mei, Wenjun & Su, Wei & Chen, Ge, 2023. "Evolutionary games on networks: Phase transition, quasi-equilibrium, and mathematical principles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    6. Alexander G. Ginsberg & Feng Fu, 2018. "Evolution of Cooperation in Public Goods Games with Stochastic Opting-Out," Games, MDPI, vol. 10(1), pages 1-27, December.
    7. Shu, Feng & Liu, Yaojun & Liu, Xingwen & Zhou, Xiaobing, 2019. "Memory-based conformity enhances cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 480-490.
    8. Wang, Xiaofeng & Perc, Matjaž, 2021. "Emergence of cooperation in spatial social dilemmas with expulsion," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    9. Serge Galam & Marco Alberto Javarone, 2016. "Modeling Radicalization Phenomena in Heterogeneous Populations," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.
    10. Yuan, Hairui & Meng, Xinzhu, 2022. "Replicator dynamics of the Hawk-Dove game with different stochastic noises in infinite populations," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    11. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Wang, Jun & Yuan, Lin & Gu, Changgui & Jiang, Luo-Luo & Perc, Matjaž, 2022. "Options for mobility and network reciprocity to jointly yield robust cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    12. Shu, Feng, 2020. "A win-switch-lose-stay strategy promotes cooperation in the evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    13. Javarone, Marco Alberto, 2016. "An evolutionary strategy based on partial imitation for solving optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 262-269.
    14. Quan, Ji & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Evidential reasoning based on imitation and aspiration information in strategy learning promotes cooperation in optional spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    15. Marco Alberto Javarone, 2016. "Modeling Poker Challenges by Evolutionary Game Theory," Games, MDPI, vol. 7(4), pages 1-10, December.
    16. de Oliveira, B.F. & de Moraes, M.V. & Bazeia, D. & Szolnoki, A., 2021. "Mobility driven coexistence of living organisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    17. Chen, Wei & Wang, Jianwei & Yu, Fengyuan & He, Jialu & Xu, Wenshu & Wang, Rong, 2021. "Effects of emotion on the evolution of cooperation in a spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    18. Lucas Wardil & Marco Antonio Amaral, 2017. "Cooperation in Public Goods Games: Stay, But Not for Too Long," Games, MDPI, vol. 8(3), pages 1-10, August.
    19. Shi, Zhenyu & Wei, Wei & Zheng, Hongwei & Zheng, Zhiming, 2023. "Bidirectional supervision: An effective method to suppress corruption and defection under the third party punishment mechanism of donation games," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    20. Shu, Feng & Li, Min & Liu, Xingwen, 2019. "Memory mechanism with weighting promotes cooperation in the evolutionary games," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 17-24.
    21. Ji, Jiezhou & Pan, Qiuhui & Zhu, Wenqiang & He, Mingfeng, 2023. "The influence of own historical information and environmental historical information on the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    22. Wu, Yu’e & Zhang, Zhipeng & Chang, Shuhua, 2019. "Reciprocal reward promotes the evolution of cooperation in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 230-236.

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:89:y:2016:i:2:d:10.1140_epjb_e2016-60901-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.