IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v545y2020ics037843711931948x.html
   My bibliography  Save this article

Community detection algorithm based on nonnegative matrix factorization and pairwise constraints

Author

Listed:
  • Lu, Hong
  • Sang, Xiaoshuang
  • Zhao, Qinghua
  • Lu, Jianfeng

Abstract

Community detection is a critical issue in the field of complex networks. Nonnegative matrix factorization (NMF) has been one of the hot research topics in community detection. In the real world, only topology information is inadequate to detect community structure accurately. To utilize the limited supervised information effectively, we propose two algorithms for community detection, which combine NMF or (Symmetric NMF) with pairwise constraints to deal with linearly separable data and nonlinearly separable data, respectively. Currently, most of NMF-based community detection methods need the number of communities in advance or searching among all candidates with different K. To address this issue, we use singular value decomposition to reveal the number of communities automatically. Experimental results demonstrate that the proposed methods can produce higher clustering performance compared with some state-of-the-art methods.

Suggested Citation

  • Lu, Hong & Sang, Xiaoshuang & Zhao, Qinghua & Lu, Jianfeng, 2020. "Community detection algorithm based on nonnegative matrix factorization and pairwise constraints," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  • Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s037843711931948x
    DOI: 10.1016/j.physa.2019.123491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711931948X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Xiaoke & Gao, Lin & Yong, Xuerong & Fu, Lidong, 2010. "Semi-supervised clustering algorithm for community structure detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 187-197.
    2. Kehui Chen & Jing Lei, 2018. "Network Cross-Validation for Determining the Number of Communities in Network Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 241-251, January.
    3. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    4. Zhen Li & Yong Gong & Zhisong Pan & Guyu Hu, 2017. "An efficient semi-supervised community detection framework in social networks," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-16, May.
    5. Li, Hui-Jia & Bu, Zhan & Li, Yulong & Zhang, Zhongyuan & Chu, Yanchang & Li, Guijun & Cao, Jie, 2018. "Evolving the attribute flow for dynamical clustering in signed networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 20-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fengqin Tang & Xuejing Zhao & Cuixia Li, 2023. "Community Detection in Multilayer Networks Based on Matrix Factorization and Spectral Embedding Method," Mathematics, MDPI, vol. 11(7), pages 1-19, March.
    2. Chen, Chunchun & Zhu, Wenjie & Peng, Bo, 2022. "Differentiated graph regularized non-negative matrix factorization for semi-supervised community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chunchun & Zhu, Wenjie & Peng, Bo, 2022. "Differentiated graph regularized non-negative matrix factorization for semi-supervised community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Overlapping community detection using neighborhood ratio matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 510-521.
    3. Zhang, Zhong-Yuan & Gai, Yujie & Wang, Yu-Fei & Cheng, Hui-Min & Liu, Xin, 2018. "On equivalence of likelihood maximization of stochastic block model and constrained nonnegative matrix factorization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 687-697.
    4. Chen, Zigang & Li, Lixiang & Peng, Haipeng & Liu, Yuhong & Yang, Yixian, 2018. "Attributed community mining using joint general non-negative matrix factorization with graph Laplacian," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 324-335.
    5. Ma, Xiaoke & Wang, Bingbo & Yu, Liang, 2018. "Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 786-802.
    6. Da Kuang & Sangwoon Yun & Haesun Park, 2015. "SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering," Journal of Global Optimization, Springer, vol. 62(3), pages 545-574, July.
    7. Ma, Xiaoke & Li, Dongyuan & Tan, Shiyin & Huang, Zhihao, 2019. "Detecting evolving communities in dynamic networks using graph regularized evolutionary nonnegative matrix factorization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 530(C), pages 1-1.
    8. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    9. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    10. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    11. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    12. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    13. Jiang, Lincheng & Zhao, Xiang & Ge, Bin & Xiao, Weidong & Ruan, Yirun, 2019. "An efficient algorithm for mining a set of influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 58-65.
    14. Jingfeng Guo & Chao Zheng & Shanshan Li & Yutong Jia & Bin Liu, 2022. "BiInfGCN: Bilateral Information Augmentation of Graph Convolutional Networks for Recommendation," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
    15. Jianfei Cao & Han Yang & Jianshu Lv & Quanyuan Wu & Baolei Zhang, 2023. "Estimating Soil Salinity with Different Levels of Vegetation Cover by Using Hyperspectral and Non-Negative Matrix Factorization Algorithm," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    16. Zhang, Lifeng & Chao, Xiangrui & Qian, Qian & Jing, Fuying, 2022. "Credit evaluation solutions for social groups with poor services in financial inclusion: A technical forecasting method," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    17. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    18. Anna Luiza Silva Almeida Vicente & Alexei Novoloaca & Vincent Cahais & Zainab Awada & Cyrille Cuenin & Natália Spitz & André Lopes Carvalho & Adriane Feijó Evangelista & Camila Souza Crovador & Rui Ma, 2022. "Cutaneous and acral melanoma cross-OMICs reveals prognostic cancer drivers associated with pathobiology and ultraviolet exposure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Takehiro Sano & Tsuyoshi Migita & Norikazu Takahashi, 2022. "A novel update rule of HALS algorithm for nonnegative matrix factorization and Zangwill’s global convergence," Journal of Global Optimization, Springer, vol. 84(3), pages 755-781, November.
    20. Tidarat Luangrungruang & Urachart Kokaew, 2022. "Adapting Fleming-Type Learning Style Classifications to Deaf Student Behavior," Sustainability, MDPI, vol. 14(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s037843711931948x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.