IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v507y2018icp347-357.html
   My bibliography  Save this article

An extended car-following model considering the self-stabilizing driving behavior of headway

Author

Listed:
  • Wang, Jufeng
  • Sun, Fengxin
  • Cheng, Rongjun
  • Ge, Hongxia

Abstract

Considering the self-stabilizing driving behavior of headway, an extended car-following model called the self-stabilizing optimal velocity (SSOV) model is presented in this paper. To show the effect of the self-stabilizing driving behavior of headway, the SSOV model is investigated by the analytical and numerical methods. By using the linear analysis method, the stability condition of the SSOV model is obtained. And then by using the nonlinear analysis method, the Burgers, KdV and modified KdV equations are respectively derived to describe the propagating behavior of traffic density wave in the stable, unstable regions and near the critical point. The numerical simulations are presented to show the valid of the analytical results and the effect of the self-stabilizing driving behavior. The analytical and numerical results all show that the self stabilizing driving behavior plays an important role on the stability and flux of the traffic flow.

Suggested Citation

  • Wang, Jufeng & Sun, Fengxin & Cheng, Rongjun & Ge, Hongxia, 2018. "An extended car-following model considering the self-stabilizing driving behavior of headway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 347-357.
  • Handle: RePEc:eee:phsmap:v:507:y:2018:i:c:p:347-357
    DOI: 10.1016/j.physa.2018.05.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118305867
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.05.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Rui & Wu, Qing-Song & Zhu, Zuo-Jin, 2002. "A new continuum model for traffic flow and numerical tests," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 405-419, June.
    2. Ou, Hui & Tang, Tie-Qiao, 2018. "Impacts of moving bottlenecks on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 131-138.
    3. D. Helbing, 2009. "Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 69(4), pages 539-548, June.
    4. Jie Zhou & Zhong-Ke Shi, 2015. "Lattice hydrodynamic model for bidirectional pedestrian flow with the consideration of pedestrian density difference," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(08), pages 1-20.
    5. Nagatani, Takashi, 1998. "Modified KdV equation for jamming transition in the continuum models of traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 599-607.
    6. Tang, Tie-Qiao & Luo, Xiao-Feng & Liu, Kai, 2016. "Impacts of the driver’s bounded rationality on the traffic running cost under the car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 316-321.
    7. Ou, Hui & Tang, Tie-Qiao, 2018. "An extended two-lane car-following model accounting for inter-vehicle communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 260-268.
    8. Nagatani, Takashi, 1999. "TDGL and MKdV equations for jamming transition in the lattice models of traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 264(3), pages 581-592.
    9. Tang, Tie-Qiao & Huang, Hai-Jun & Shang, Hua-Yan, 2017. "An extended macro traffic flow model accounting for the driver’s bounded rationality and numerical tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 322-333.
    10. Peng, G.H. & Cai, X.H. & Cao, B.F. & Liu, C.Q., 2012. "A new lattice model of traffic flow with the consideration of the traffic interruption probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 656-663.
    11. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    12. Tian, Huan-huan & He, Hong-di & Wei, Yan-fang & Yu, Xue & Lu, Wei-zhen, 2009. "Lattice hydrodynamic model with bidirectional pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2895-2902.
    13. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    14. Tang, Tie-Qiao & Zhang, Jian & Liu, Kai, 2017. "A speed guidance model accounting for the driver’s bounded rationality at a signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 45-52.
    15. Zhu, Wen-Xing & Zhang, Li-Dong, 2016. "Analysis of car-following model with cascade compensation strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 265-274.
    16. Peng, Guang-han & Cheng, Rong-jun, 2013. "A new car-following model with the consideration of anticipation optimal velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3563-3569.
    17. Peng, G.H. & Song, W. & Peng, Y.J. & Wang, S.H., 2014. "A novel macro model of traffic flow with the consideration of anticipation optimal velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 76-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Bin & Zhou, Huixin & Wang, Lin & Wang, Zirui & Cui, Shaohua, 2021. "An extended two-lane car-following model considering the influence of heterogeneous speed information on drivers with different characteristics under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    2. Wang, Jufeng & Sun, Fengxin & Ge, Hongxia, 2019. "An improved lattice hydrodynamic model considering the driver’s desire of driving smoothly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 119-129.
    3. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    4. Zhai, Cong & Li, Kening & Zhang, Ronghui & Peng, Tao & Zong, Changfu, 2024. "Phase diagram in multi-phase heterogeneous traffic flow model integrating the perceptual range difference under human-driven and connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Sun, Fengxin & Chow, Andy H.F. & Lo, S.M. & Ge, Hongxia, 2018. "A two-lane lattice hydrodynamic model with heterogeneous lane changing rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 389-400.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Rongjun & Ge, Hongxia & Sun, Fengxin & Wang, Jufeng, 2018. "An extended macro model accounting for acceleration changes with memory and numerical tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 270-283.
    2. Rongjun, Cheng & Hongxia, Ge & Jufeng, Wang, 2018. "The nonlinear analysis for a new continuum model considering anticipation and traffic jerk effect," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 493-505.
    3. Liu, Zhaoze & Ge, Hongxia & Cheng, Rongjun, 2018. "KdV–Burgers equation in the modified continuum model considering the effect of friction and radius on a curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1218-1227.
    4. Zhaoze, Liu & Rongjun, Cheng & Hongxia, Ge, 2019. "Research on preceding vehicle’s taillight effect and energy consumption in an extended macro traffic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 304-314.
    5. Qingtao, Zhai & Hongxia, Ge & Rongjun, Cheng, 2018. "An extended continuum model considering optimal velocity change with memory and numerical tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 774-785.
    6. Wang, Jufeng & Sun, Fengxin & Cheng, Rongjun & Ge, Hongxia, 2018. "An extended heterogeneous car-following model with the consideration of the drivers’ different psychological headways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1113-1125.
    7. Jiao, Yulei & Ge, Hongxia & Cheng, Rongjun, 2019. "Nonlinear analysis for a modified continuum model considering electronic throttle (ET) and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. Wang, Tao & Li, Guangyao & Zhang, Jing & Li, Shubin & Sun, Tao, 2019. "The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 566-575.
    9. Qi, Xinyue & Ge, Hongxia & Cheng, Rongjun, 2019. "Analysis of a novel lattice hydrodynamic model considering density integral and “backward looking” effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 714-723.
    10. Sun, Fengxin & Wang, Jufeng & Cheng, Rongjun, 2019. "An improved anisotropic continuum model considering the driver’s desire for steady driving," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1449-1462.
    11. Wang, Jufeng & Sun, Fengxin & Ge, Hongxia, 2019. "An improved lattice hydrodynamic model considering the driver’s desire of driving smoothly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 119-129.
    12. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    13. Wang, Jufeng & Sun, Fengxin & Ge, Hongxia, 2018. "Effect of the driver’s desire for smooth driving on the car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 96-108.
    14. Changtao-Jiang, & Rongjun-Cheng, & Hongxia-Ge,, 2019. "Mean-field flow difference model with consideration of on-ramp and off-ramp," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 465-476.
    15. Wang, Zihao & Ge, Hongxia & Cheng, Rongjun, 2018. "Nonlinear analysis for a modified continuum model considering driver’s memory and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 18-27.
    16. Jiang, Changtao & Cheng, Rongjun & Ge, Hongxia, 2018. "Effects of speed deviation and density difference in traffic lattice hydrodynamic model with interruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 900-908.
    17. Yongjiang-Wang, & Han-Song, & Rongjun-Cheng,, 2019. "TDGL and mKdV equations for an extended car-following model with the consideration of driver’s memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 440-449.
    18. Jin, Zhizhan & Yang, Zaili & Ge, Hongxia, 2018. "Energy consumption investigation for a new car-following model considering driver’s memory and average speed of the vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1038-1049.
    19. Wang, Qingying & Ge, Hongxia, 2019. "An improved lattice hydrodynamic model accounting for the effect of “backward looking” and flow integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 438-446.
    20. Sun, Fengxin & Chow, Andy H.F. & Lo, S.M. & Ge, Hongxia, 2018. "A two-lane lattice hydrodynamic model with heterogeneous lane changing rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 389-400.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:507:y:2018:i:c:p:347-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.