IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v506y2018icp197-207.html
   My bibliography  Save this article

Impact of network randomness on multiple opinion dynamics

Author

Listed:
  • Dornelas, Vivian
  • Ramos, Marlon
  • Anteneodo, Celia

Abstract

People often face the challenge of choosing among different options with similar attractiveness. To study the distribution of preferences that emerge in such situations, a useful approach is to simulate opinion dynamics on top of complex networks, composed by nodes (individuals) and their connections (edges), where the state of each node can be one amongst several opinions including the undecided state. We analyze two different dynamics: the one proposed by Travieso and Fontoura (TF) and the plurality rule (PR), which are paradigmatic of outflow and inflow dynamics, respectively. We are specially interested in the impact of the network randomness on the final distribution of opinions. For that purpose, we consider Watts–Strogatz networks, which possess the small-world property, and where randomness is controlled by a probability p of adding random shortcuts to an initially regular network. Depending on the value of p, the average connectivity 〈k〉, and the initial conditions, the final distribution can be basically (i) consensus, (ii) coexistence of different options, or (iii) predominance of indecision. We find that, in both dynamics, the predominance of a winning opinion is favored by increasing the number of reconnections (shortcuts), promoting consensus. In contrast to the TF case, in the PR dynamics, a fraction of undecided nodes can persist in the final state. In such cases, a maximum number of undecided nodes occurs within the small-world range of p, due to ties in the decision group.

Suggested Citation

  • Dornelas, Vivian & Ramos, Marlon & Anteneodo, Celia, 2018. "Impact of network randomness on multiple opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 197-207.
  • Handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:197-207
    DOI: 10.1016/j.physa.2018.04.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118304485
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.04.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Serge Galam, 2008. "Sociophysics: A Review Of Galam Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 409-440.
    2. S. M.D. Seaver & A. A. Moreira & M. Sales-Pardo & R. D. Malmgren & D. Diermeier & L. A.N. Amaral, 2009. "Micro-bias and macro-performance," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(3), pages 369-375, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bashari, Masoud & Akbarzadeh-T, Mohammad-R., 2020. "Controlling opinions in Deffuant model by reconfiguring the network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hutzler, S. & Sommer, C. & Richmond, P., 2016. "On the relationship between income, fertility rates and the state of democracy in society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 9-18.
    2. Célestin Coquidé & José Lages & Dima Shepelyansky, 2024. "Opinion Formation in the World Trade Network," Post-Print hal-04461784, HAL.
    3. Fan Zou & Yupeng Li & Jiahuan Huang, 2022. "Group interaction and evolution of customer reviews based on opinion dynamics towards product redesign," Electronic Commerce Research, Springer, vol. 22(4), pages 1131-1151, December.
    4. Serge Galam, 2016. "The invisible hand and the rational agent are behind bubbles and crashes," Papers 1601.02990, arXiv.org.
    5. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    6. Javarone, Marco Alberto, 2016. "An evolutionary strategy based on partial imitation for solving optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 262-269.
    7. Andrea Ellero & Annamaria Sorato & Giovanni Fasano, 2011. "A new model for estimating the probability of information spreading with opinion leaders," Working Papers 13, Department of Management, Università Ca' Foscari Venezia.
    8. Galam, Serge & Walliser, Bernard, 2010. "Ising model versus normal form game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 481-489.
    9. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    10. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    11. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    12. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    13. Javarone, Marco Alberto, 2014. "Social influences in opinion dynamics: The role of conformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 19-30.
    14. Schadner, Wolfgang, 2022. "U.S. Politics from a multifractal perspective," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    15. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    16. Shin, J.K., 2009. "Information accumulation system by inheritance and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3593-3599.
    17. Su, Qiang & Huang, Jiajia & Zhao, Xiande, 2015. "An information propagation model considering incomplete reading behavior in microblog," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 55-63.
    18. Biondi, Yuri & Giannoccolo, Pierpaolo & Galam, Serge, 2012. "Formation of share market prices under heterogeneous beliefs and common knowledge," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5532-5545.
    19. Galam, Serge, 2010. "Public debates driven by incomplete scientific data: The cases of evolution theory, global warming and H1N1 pandemic influenza," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3619-3631.
    20. Kurmyshev, Evguenii & Juárez, Héctor A. & González-Silva, Ricardo A., 2011. "Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2945-2955.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:197-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.