IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v495y2018icp418-426.html
   My bibliography  Save this article

A new hierarchical method to find community structure in networks

Author

Listed:
  • Saoud, Bilal
  • Moussaoui, Abdelouahab

Abstract

Community structure is very important to understand a network which represents a context. Many community detection methods have been proposed like hierarchical methods. In our study, we propose a new hierarchical method for community detection in networks based on genetic algorithm. In this method we use genetic algorithm to split a network into two networks which maximize the modularity. Each new network represents a cluster (community). Then we repeat the splitting process until we get one node at each cluster. We use the modularity function to measure the strength of the community structure found by our method, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our method are highly effective at discovering community structure in both computer-generated and real-world network data.

Suggested Citation

  • Saoud, Bilal & Moussaoui, Abdelouahab, 2018. "A new hierarchical method to find community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 418-426.
  • Handle: RePEc:eee:phsmap:v:495:y:2018:i:c:p:418-426
    DOI: 10.1016/j.physa.2017.12.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117313390
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.12.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    2. Shang, Ronghua & Bai, Jing & Jiao, Licheng & Jin, Chao, 2013. "Community detection based on modularity and an improved genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1215-1231.
    3. Kleczkowski, Adam & Grenfell, Bryan T., 1999. "Mean-field-type equations for spread of epidemics: the ‘small world’ model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 355-360.
    4. Shang, Ronghua & Luo, Shuang & Li, Yangyang & Jiao, Licheng & Stolkin, Rustam, 2015. "Large-scale community detection based on node membership grade and sub-communities integration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 279-294.
    5. Shang, Ronghua & Zhang, Weitong & Jiao, Licheng & Stolkin, Rustam & Xue, Yu, 2017. "A community integration strategy based on an improved modularity density increment for large-scale networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 471-485.
    6. Cristopher Moore & M. E. J. Newman, 2000. "Epidemics and Percolation in Small-World Networks," Working Papers 00-01-002, Santa Fe Institute.
    7. Shang, Ronghua & Luo, Shuang & Zhang, Weitong & Stolkin, Rustam & Jiao, Licheng, 2016. "A multiobjective evolutionary algorithm to find community structures based on affinity propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 203-227.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Ronghua & Liu, Huan & Jiao, Licheng, 2017. "Multi-objective clustering technique based on k-nodes update policy and similarity matrix for mining communities in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 1-24.
    2. Bilal, Saoud & Abdelouahab, Moussaoui, 2017. "Evolutionary algorithm and modularity for detecting communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 89-96.
    3. Yang, Yang & Sun, Peng Gang & Hu, Xia & Li, Zhou Jun, 2014. "Closed walks for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 129-143.
    4. Fu, Yu-Hsiang & Huang, Chung-Yuan & Sun, Chuen-Tsai, 2016. "Using a two-phase evolutionary framework to select multiple network spreaders based on community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 840-853.
    5. Nedioui, Med Abdelhamid & Moussaoui, Abdelouahab & Saoud, Bilal & Babahenini, Mohamed Chaouki, 2020. "Detecting communities in social networks based on cliques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    6. Shang, Ronghua & Zhang, Weitong & Jiao, Licheng & Stolkin, Rustam & Xue, Yu, 2017. "A community integration strategy based on an improved modularity density increment for large-scale networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 471-485.
    7. Agrawal, Smita & Patel, Atul, 2021. "SAG Cluster: An unsupervised graph clustering based on collaborative similarity for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    8. Cai, Biao & Wang, Yanpeng & Zeng, Lina & Hu, Yanmei & Li, Hongjun, 2020. "Edge classification based on Convolutional Neural Networks for community detection in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    9. Chen, Kaiqi & Bi, Weihong, 2019. "A new genetic algorithm for community detection using matrix representation method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    10. Ganjeh-Ghazvini, Mostafa & Masihi, Mohsen & Ghaedi, Mojtaba, 2014. "Random walk–percolation-based modeling of two-phase flow in porous media: Breakthrough time and net to gross ratio estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 214-221.
    11. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    12. Perc, Matjaž, 2010. "Zipf’s law and log-normal distributions in measures of scientific output across fields and institutions: 40 years of Slovenia’s research as an example," Journal of Informetrics, Elsevier, vol. 4(3), pages 358-364.
    13. Ding, Waverly & Choi, Emily, 2008. "Divergent Paths or Stepping Stones: A Comparison of Scientists’ Advising and Founding Activities," Institute for Research on Labor and Employment, Working Paper Series qt4907j25p, Institute of Industrial Relations, UC Berkeley.
    14. He, Xuan & Zhao, Hai & Cai, Wei & Liu, Zheng & Si, Shuai-Zong, 2014. "Earthquake networks based on space–time influence domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 175-184.
    15. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    16. Weimao Ke, 2013. "A fitness model for scholarly impact analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 981-998, March.
    17. Pan, Ya-Nan & Lou, Jing-Jing & Han, Xiao-Pu, 2014. "Outbreak patterns of the novel avian influenza (H7N9)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 265-270.
    18. Li, Wei & Huang, Ce & Wang, Miao & Chen, Xi, 2017. "Stepping community detection algorithm based on label propagation and similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 145-155.
    19. Rodrigo Dorantes-Gilardi & Aurora A. Ramírez-Álvarez & Diana Terrazas-Santamaría, 2023. "Is there a differentiated gender effect of collaboration with super-cited authors? Evidence from junior researchers in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2317-2336, April.
    20. Klabunde, Anna, 2014. "Computational Economic Modeling of Migration," Ruhr Economic Papers 471, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:495:y:2018:i:c:p:418-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.