IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v492y2018icp155-167.html
   My bibliography  Save this article

Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel

Author

Listed:
  • Kumar, Devendra
  • Singh, Jagdev
  • Baleanu, Dumitru
  • Sushila,

Abstract

In this work, we aim to present a new fractional extension of regularized long-wave equation. The regularized long-wave equation is a very important mathematical model in physical sciences, which unfolds the nature of shallow water waves and ion acoustic plasma waves. The existence and uniqueness of the solution of the regularized long-wave equation associated with Atangana–Baleanu fractional derivative having Mittag-Leffler type kernel is verified by implementing the fixed-point theorem. The numerical results are derived with the help of an iterative algorithm. In order to show the effects of various parameters and variables on the displacement, the numerical results are presented in graphical and tabular form.

Suggested Citation

  • Kumar, Devendra & Singh, Jagdev & Baleanu, Dumitru & Sushila,, 2018. "Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 155-167.
  • Handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:155-167
    DOI: 10.1016/j.physa.2017.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117310038
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khater, Mostafa M.A., 2023. "Computational simulations of propagation of a tsunami wave across the ocean," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Jena, Rajarama Mohan & Chakraverty, Snehashish & Baleanu, Dumitru, 2021. "SIR epidemic model of childhood diseases through fractional operators with Mittag-Leffler and exponential kernels," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 514-534.
    3. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    4. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
    5. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    6. Aliyu, Aliyu Isa & Inc, Mustafa & Yusuf, Abdullahi & Baleanu, Dumitru, 2018. "A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 268-277.
    7. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    8. Khan, Hasib & Gómez-Aguilar, J.F. & Khan, Aziz & Khan, Tahir Saeed, 2019. "Stability analysis for fractional order advection–reaction diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 737-751.
    9. Owolabi, Kolade M., 2020. "High-dimensional spatial patterns in fractional reaction-diffusion system arising in biology," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    10. Marasi, H.R. & Derakhshan, M.H., 2023. "Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model based on an efficient hybrid numerical method with stability and convergence analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 368-389.
    11. Saad, Khaled M. & Srivastava, H.M. & Gómez-Aguilar, J.F., 2020. "A Fractional Quadratic autocatalysis associated with chemical clock reactions involving linear inhibition," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    12. Korpinar, Zeliha & Inc, Mustafa & Bayram, Mustafa, 2020. "Theory and application for the system of fractional Burger equations with Mittag leffler kernel," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    13. Saad, Khaled M. & Gómez-Aguilar, J.F. & Almadiy, Abdulrhman A., 2020. "A fractional numerical study on a chronic hepatitis C virus infection model with immune response," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Khan, Aziz & Khan, Hasib & Gómez-Aguilar, J.F. & Abdeljawad, Thabet, 2019. "Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 422-427.
    15. BİLDİK, Necdet & DENİZ, Sinan & SAAD, Khaled M., 2020. "A comparative study on solving fractional cubic isothermal auto-catalytic chemical system via new efficient technique," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    16. Butt, Saad Ihsan & Yousaf, Saba & Akdemir, Ahmet Ocak & Dokuyucu, Mustafa Ali, 2021. "New Hadamard-type integral inequalities via a general form of fractional integral operators," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    17. Khan, Hasib & Jarad, Fahd & Abdeljawad, Thabet & Khan, Aziz, 2019. "A singular ABC-fractional differential equation with p-Laplacian operator," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 56-61.
    18. Singh, Harendra & Srivastava, H.M., 2019. "Jacobi collocation method for the approximate solution of some fractional-order Riccati differential equations with variable coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1130-1149.
    19. Abdeljawad, Thabet & Atangana, Abdon & Gómez-Aguilar, J.F. & Jarad, Fahd, 2019. "On a more general fractional integration by parts formulae and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    20. Taneco-Hernández, M.A. & Morales-Delgado, V.F. & Gómez-Aguilar, J.F., 2019. "Fundamental solutions of the fractional Fresnel equation in the real half-line," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 807-827.
    21. Ma, Junjie & Liu, Huilan, 2020. "A sparse fractional Jacobi–Galerkin–Levin quadrature rule for highly oscillatory integrals," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    22. Inc, Mustafa & Yusuf, Abdullahi & Aliyu, Aliyu Isa & Baleanu, Dumitru, 2018. "Investigation of the logarithmic-KdV equation involving Mittag-Leffler type kernel with Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 520-531.
    23. Yusuf, Abdullahi & Inc, Mustafa & Isa Aliyu, Aliyu & Baleanu, Dumitru, 2018. "Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 220-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:155-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.