IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v127y2019icp422-427.html
   My bibliography  Save this article

Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel

Author

Listed:
  • Khan, Aziz
  • Khan, Hasib
  • Gómez-Aguilar, J.F.
  • Abdeljawad, Thabet

Abstract

In this paper we are established the existence of positive solutions (EPS) and the Hyers-Ulam (HU) stability of a general class of nonlinear Atangana-Baleanu-Caputo (ABC) fractional differential equations (FDEs) with singularity and nonlinear p-Laplacian operator in Banach’s space. To find the solution for the EPS, we use the Guo-Krasnoselskii theorem. The fractional differential equation is converted into an alternative integral structure using the Atangana-Baleanu fractional integral operator. Also, HU-stability is analyzed. We include an example with specific parameters and assumptions to show the results of the proposal.

Suggested Citation

  • Khan, Aziz & Khan, Hasib & Gómez-Aguilar, J.F. & Abdeljawad, Thabet, 2019. "Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 422-427.
  • Handle: RePEc:eee:chsofr:v:127:y:2019:i:c:p:422-427
    DOI: 10.1016/j.chaos.2019.07.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919302784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.07.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abu Arqub, Omar & Maayah, Banan, 2019. "Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 163-170.
    2. Wiyada Kumam & Mian Bahadur Zada & Kamal Shah & Rahmat Ali Khan, 2018. "Investigating a Coupled Hybrid System of Nonlinear Fractional Differential Equations," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-12, March.
    3. Kumar, Devendra & Singh, Jagdev & Baleanu, Dumitru & Sushila,, 2018. "Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 155-167.
    4. Abdeljawad, Thabet & Al-Mdallal, Qasem M. & Jarad, Fahd, 2019. "Fractional logistic models in the frame of fractional operators generated by conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 94-101.
    5. Saowaluck Chasreechai & Thanin Sitthiwirattham, 2018. "Existence Results of Initial Value Problems for Hybrid Fractional Sum-Difference Equations," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-12, January.
    6. Arqub, Omar Abu & Maayah, Banan, 2018. "Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 117-124.
    7. Jarad, Fahd & Abdeljawad, Thabet & Hammouch, Zakia, 2018. "On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 16-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Devi, Amita & Kumar, Anoop, 2022. "Hyers–Ulam stability and existence of solution for hybrid fractional differential equation with p-Laplacian operator," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Ain, Qura tul & Khan, Aziz & Ullah, Muhammad Irfan & Alqudah, Manar A. & Abdeljawad, Thabet, 2022. "On fractional impulsive system for methanol detoxification in human body," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Li, Xiaoyan, 2021. "Comment for “Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel”," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Rhaima, Mohamed, 2023. "Ulam–Hyers stability for an impulsive Caputo–Hadamard fractional neutral stochastic differential equations with infinite delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 281-295.
    5. Khan, Hasib & Alam, Khurshaid & Gulzar, Haseena & Etemad, Sina & Rezapour, Shahram, 2022. "A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 455-473.
    6. Khan, Hasib & Ibrahim, Muhammad & Abdel-Aty, Abdel-Haleem & Khashan, M. Motawi & Khan, Farhat Ali & Khan, Aziz, 2021. "A fractional order Covid-19 epidemic model with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    7. Muñoz-Vázquez, Aldo Jonathan & Sánchez-Torres, Juan Diego & Defoort, Michael & Boulaaras, Salah, 2021. "Predefined-time convergence in fractional-order systems," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    8. Ullah, Malik Zaka & Mallawi, Fouad & Baleanu, Dumitru & Alshomrani, Ali Saleh, 2020. "A new fractional study on the chaotic vibration and state-feedback control of a nonlinear suspension system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    9. Khan, Hasib & Ahmed, Saim & Alzabut, Jehad & Azar, Ahmad Taher, 2023. "A generalized coupled system of fractional differential equations with application to finite time sliding mode control for Leukemia therapy," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Logeswari, K. & Ravichandran, C., 2020. "A new exploration on existence of fractional neutral integro- differential equations in the concept of Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. BİLDİK, Necdet & DENİZ, Sinan & SAAD, Khaled M., 2020. "A comparative study on solving fractional cubic isothermal auto-catalytic chemical system via new efficient technique," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Begum, Razia & Tunç, Osman & Khan, Hasib & Gulzar, Haseena & Khan, Aziz, 2021. "A fractional order Zika virus model with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    5. Abu Arqub, Omar & Al-Smadi, Mohammed, 2020. "An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Arqub, Omar Abu & Maayah, Banan, 2019. "Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 394-402.
    7. Djennadi, Smina & Shawagfeh, Nabil & Abu Arqub, Omar, 2021. "A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    8. Khan, Hasib & Khan, Aziz & Jarad, Fahd & Shah, Anwar, 2020. "Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    9. Qureshi, Sania & Memon, Zaib-un-Nisa, 2020. "Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    10. Al-Smadi, Mohammed & Arqub, Omar Abu & Zeidan, Dia, 2021. "Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. Atangana, Abdon & Shafiq, Anum, 2019. "Differential and integral operators with constant fractional order and variable fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 226-243.
    12. Saad, Khaled M. & Srivastava, H.M. & Gómez-Aguilar, J.F., 2020. "A Fractional Quadratic autocatalysis associated with chemical clock reactions involving linear inhibition," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    13. Omar Abu Arqub & Mohamed S. Osman & Abdel-Haleem Abdel-Aty & Abdel-Baset A. Mohamed & Shaher Momani, 2020. "A Numerical Algorithm for the Solutions of ABC Singular Lane–Emden Type Models Arising in Astrophysics Using Reproducing Kernel Discretization Method," Mathematics, MDPI, vol. 8(6), pages 1-15, June.
    14. Khan, Hasib & Jarad, Fahd & Abdeljawad, Thabet & Khan, Aziz, 2019. "A singular ABC-fractional differential equation with p-Laplacian operator," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 56-61.
    15. Khan, Aziz & Abdeljawad, Thabet & Gómez-Aguilar, J.F. & Khan, Hasib, 2020. "Dynamical study of fractional order mutualism parasitism food web module," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    16. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
    18. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    19. Partohaghighi, Mohammad & Akgül, Ali, 2021. "Modelling and simulations of the SEIR and Blood Coagulation systems using Atangana-Baleanu-Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    20. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:127:y:2019:i:c:p:422-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.