IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v472y2017icp43-52.html
   My bibliography  Save this article

Enhanced collective influence: A paradigm to optimize network disruption

Author

Listed:
  • Wu, Tao
  • Chen, Leiting
  • Zhong, Linfeng
  • Xian, Xingping

Abstract

The function of complex networks typically relies on the integrity of underlying structure. Sometimes, practical applications need to attack networks’ function, namely inactivate and fragment networks’ underlying structure. To effectively dismantle complex networks and regulate the function of them, a centrality measure, named CI (Morone and Makse, 2015), was proposed for node ranking. We observe that the performance of CI centrality in network disruption problem may deteriorate when it is used in networks with different topology properties. Specifically, the structural features of local network topology are overlooked in CI centrality, even though the local network topology of the nodes with a fixed CI value may have very different organization. To improve the ranking accuracy of CI, this paper proposes a variant ECI to CI by considering loop density and degree diversity of local network topology. And the proposed ECI centrality would degenerate into CI centrality with the reduction of the loop density and the degree diversity level. By comparing ECI with CI and classical centrality measures in both synthetic and real networks, the experimental results suggest that ECI can largely improve the performance of CI for network disruption. Based on the results, we analyze the correlation between the improvement and the properties of the networks. We find that the performance of ECI is positively correlated with assortative coefficient and community modularity and negatively correlated with degree inequality of networks, which can be used as guidance for practical applications.

Suggested Citation

  • Wu, Tao & Chen, Leiting & Zhong, Linfeng & Xian, Xingping, 2017. "Enhanced collective influence: A paradigm to optimize network disruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 43-52.
  • Handle: RePEc:eee:phsmap:v:472:y:2017:i:c:p:43-52
    DOI: 10.1016/j.physa.2016.12.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116310147
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.12.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jian-Guo & Ren, Zhuo-Ming & Guo, Qiang, 2013. "Ranking the spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4154-4159.
    2. Liu, Ying & Tang, Ming & Zhou, Tao & Do, Younghae, 2016. "Identify influential spreaders in complex networks, the role of neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 289-298.
    3. Wu, Tao & Guo, Yuxiao & Chen, Leiting & Liu, Yanbing, 2016. "Integrated structure investigation in complex networks by label propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 68-80.
    4. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    5. Zhu, Xuzhen & Tian, Hui & Cai, Shimin, 2014. "Predicting missing links via effective paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 515-522.
    6. L. Šubelj & M. Bajec, 2011. "Robust network community detection using balanced propagation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 81(3), pages 353-362, June.
    7. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    8. Li, Qian & Zhou, Tao & Lü, Linyuan & Chen, Duanbing, 2014. "Identifying influential spreaders by weighted LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 47-55.
    9. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    10. Wu, Tao & Chen, Leiting & Zhong, Linfeng & Xian, Xingping, 2017. "Predicting the evolution of complex networks via similarity dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 662-672.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Tao & Xian, Xingping & Zhong, Linfeng & Xiong, Xi & Stanley, H. Eugene, 2018. "Power iteration ranking via hybrid diffusion for vital nodes identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 802-815.
    2. Garza, Sara E. & Schaeffer, Satu Elisa, 2019. "Community detection with the Label Propagation Algorithm: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    3. Ren, Baoan & Zhang, Yu & Chen, Jing & Shen, Lincheng, 2019. "Efficient network disruption under imperfect information: The sharpening effect of network reconstruction with no prior knowledge," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 196-207.
    4. Liu, Xiang-Chun & Zhu, Xu-Zhen & Tian, Hui & Zhang, Zeng-Ping & Wang, Wei, 2019. "Identifying localized influential spreaders of information spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 92-97.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    2. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    3. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    4. Wang, Xiaojie & Su, Yanyuan & Zhao, Chengli & Yi, Dongyun, 2016. "Effective identification of multiple influential spreaders by DegreePunishment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 238-247.
    5. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    6. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Shokrollahi, Arman, 2015. "Improving detection of influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 833-845.
    7. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    8. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    9. Wu, Tao & Chen, Leiting & Zhong, Linfeng & Xian, Xingping, 2017. "Predicting the evolution of complex networks via similarity dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 662-672.
    10. Ma, Qian & Ma, Jun, 2017. "Identifying and ranking influential spreaders in complex networks with consideration of spreading probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 312-330.
    11. Gao, Shuai & Ma, Jun & Chen, Zhumin & Wang, Guanghui & Xing, Changming, 2014. "Ranking the spreading ability of nodes in complex networks based on local structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 130-147.
    12. Huang, Wencheng & Li, Haoran & Yin, Yanhui & Zhang, Zhi & Xie, Anhao & Zhang, Yin & Cheng, Guo, 2024. "Node importance identification of unweighted urban rail transit network: An Adjacency Information Entropy based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    13. Zhong, Lin-Feng & Shang, Ming-Sheng & Chen, Xiao-Long & Cai, Shi-Ming, 2018. "Identifying the influential nodes via eigen-centrality from the differences and similarities of structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 77-82.
    14. Zhu, Hengmin & Yin, Xicheng & Ma, Jing & Hu, Wei, 2016. "Identifying the main paths of information diffusion in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 320-328.
    15. Wang, Junyi & Hou, Xiaoni & Li, Kezan & Ding, Yong, 2017. "A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 88-105.
    16. Wen, Tao & Jiang, Wen, 2019. "Identifying influential nodes based on fuzzy local dimension in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 332-342.
    17. Garza, Sara E. & Schaeffer, Satu Elisa, 2019. "Community detection with the Label Propagation Algorithm: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    18. Kumar, Ajay & Mishra, Shivansh & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction in complex networks based on Significance of Higher-Order Path Index (SHOPI)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    19. Yeruva, Sujatha & Devi, T. & Reddy, Y. Samtha, 2016. "Selection of influential spreaders in complex networks using Pareto Shell decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 133-144.
    20. Zhong, Lin-Feng & Liu, Quan-Hui & Wang, Wei & Cai, Shi-Min, 2018. "Comprehensive influence of local and global characteristics on identifying the influential nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 78-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:472:y:2017:i:c:p:43-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.