IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v394y2014icp288-303.html
   My bibliography  Save this article

Following a trend with an exponential moving average: Analytical results for a Gaussian model

Author

Listed:
  • Grebenkov, Denis S.
  • Serror, Jeremy

Abstract

We investigate how price variations of a stock are transformed into profits and losses (P&Ls) of a trend following strategy. In the frame of a Gaussian model, we derive the probability distribution of P&Ls and analyze its moments (mean, variance, skewness and kurtosis) and asymptotic behavior (quantiles). We show that the asymmetry of the distribution (with often small losses and less frequent but significant profits) is reminiscent to trend following strategies and less dependent on peculiarities of price variations. At short times, trend following strategies admit larger losses than one may anticipate from standard Gaussian estimates, while smaller losses are ensured at longer times. Simple explicit formulas characterizing the distribution of P&Ls illustrate the basic mechanisms of momentum trading, while general matrix representations can be applied to arbitrary Gaussian models. We also compute explicitly annualized risk adjusted P&L and strategy turnover to account for transaction costs. We deduce the trend following optimal timescale and its dependence on both auto-correlation level and transaction costs. Theoretical results are illustrated on the Dow Jones index.

Suggested Citation

  • Grebenkov, Denis S. & Serror, Jeremy, 2014. "Following a trend with an exponential moving average: Analytical results for a Gaussian model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 288-303.
  • Handle: RePEc:eee:phsmap:v:394:y:2014:i:c:p:288-303
    DOI: 10.1016/j.physa.2013.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113009722
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871.
    2. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Papailias, Fotis & Thomakos, Dimitrios D., 2015. "An improved moving average technical trading rule," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 458-469.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    2. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    3. Pištěk, Miroslav & Slanina, František, 2011. "Diversity of scales makes an advantage: The case of the Minority Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2549-2561.
    4. Denis S. Grebenkov & Jeremy Serror, 2014. "Optimal Allocation of Trend Following Strategies," Papers 1410.8409, arXiv.org.
    5. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    6. Sebastien Valeyre, 2022. "Optimal trend following portfolios," Papers 2201.06635, arXiv.org.
    7. Philippe Jacquinot & Nikolay Sukhomlin, 2010. "A direct formulation of implied volatility in the Black-Scholes model," Post-Print hal-02533014, HAL.
    8. Xinyu Wang & Liang Zhao & Ning Zhang & Liu Feng & Haibo Lin, 2022. "Stability of China's Stock Market: Measure and Forecast by Ricci Curvature on Network," Papers 2204.06692, arXiv.org.
    9. Anirban Chakraborti & Kiran Sharma & Hirdesh K. Pharasi & Sourish Das & Rakesh Chatterjee & Thomas H. Seligman, 2018. "Characterization of catastrophic instabilities: Market crashes as paradigm," Papers 1801.07213, arXiv.org.
    10. Dimitri O. Ledenyov & Viktor O. Ledenyov, 2013. "On the optimal allocation of assets in investment portfolio with application of modern portfolio and nonlinear dynamic chaos theories in investment, commercial and central banks," Papers 1301.4881, arXiv.org, revised Feb 2013.
    11. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2022. "Microfounding GARCH Models and Beyond: A Kyle-inspired Model with Adaptive Agents," Working Papers hal-03797251, HAL.
    12. Miroslav Piv{s}tv{e}k & Frantisek Slanina, 2014. "Diversity of scales makes an advantage: The case of the Minority Game," Papers 1401.4331, arXiv.org.
    13. Sieczka, Paweł & Hołyst, Janusz A., 2008. "Statistical properties of short term price trends in high frequency stock market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1218-1224.
    14. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    15. Stefan, F.M. & Atman, A.P.F., 2015. "Is there any connection between the network morphology and the fluctuations of the stock market index?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 630-641.
    16. Heckens, Anton J. & Guhr, Thomas, 2022. "New collectivity measures for financial covariances and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    17. Pan, Raj Kumar & Sinha, Sitabhra, 2008. "Inverse-cubic law of index fluctuation distribution in Indian markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2055-2065.
    18. B. Zhang & J. Wang & W. Zhang & G. C. Wang, 2020. "Nonlinear Scaling Behavior of Visible Volatility Duration for Financial Statistical Physics Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 373-389, August.
    19. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
    20. Michele Vodret & Iacopo Mastromatteo & Bence Toth & Michael Benzaquen, 2022. "Microfounding GARCH Models and Beyond: A Kyle-inspired Model with Adaptive Agents," Papers 2206.06764, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:394:y:2014:i:c:p:288-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.