IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Bivelocity hydrodynamics. Diffuse mass flux vs. diffuse volume flux

Listed author(s):
  • Brenner, Howard
Registered author(s):

    An intimate physical connection exists between a fluid’s mass and its volume, with the density ρ serving as a proportionality factor relating these two extensive thermodynamic properties when the fluid is homogeneous. This linkage has led to the erroneous belief among many researchers that a fluid’s diffusive (dissipative) mass flux and its diffusive volume flux counterpart, both occurring in inhomogeneous fluids undergoing transport are, in fact, synonymous. However, the existence of a truly dissipative mass flux (that is, a mass flux that is physically dissipative) has recently and convincingly been shown to be a physical impossibility [H.C. Öttinger, H. Struchtrup, M. Liu, On the impossibility of a dissipative contribution to the mass flux in hydrodynamics, Phys. Rev. E 80 (2009) 056303], owing, among other things, to its violation of the principle of angular momentum conservation. Unfortunately, as a consequence of the erroneous belief in the equality of the diffuse volume and mass fluxes (sans an algebraic sign), this has led many researchers to wrongly conclude that a diffuse volume flux is equally impossible. As a consequence, owing to the fundamental role played by the diffuse volume flux in the theory of bivelocity hydrodynamics [H. Brenner, Beyond Navier–Stokes, Int. J. Eng. Sci. 54 (2012) 67–98], many researchers have been led to falsely dismiss, without due consideration, the possibility of bivelocity hydrodynamics constituting a potentially viable physical theory, which it is believed to be. The present paper corrects this misconception by using a simple concrete example involving an isothermal rotating rigid-body fluid motion to clearly confirm that whereas a diffuse mass flux is indeed impossible, this fact does not exclude the possible existence of a diffuse volume flux and, concomitantly, the possibility that bivelocity hydrodynamics is indeed a potentially viable branch of fluid mechanics.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 392 (2013)
    Issue (Month): 4 ()
    Pages: 558-566

    in new window

    Handle: RePEc:eee:phsmap:v:392:y:2013:i:4:p:558-566
    DOI: 10.1016/j.physa.2012.09.013
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Bardow, André & Christian Öttinger, Hans, 2007. "Consequences of the Brenner modification to the Navier–Stokes equations for dynamic light scattering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 88-96.
    2. Brenner, Howard, 2005. "Kinematics of volume transport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(1), pages 11-59.
    3. Bedeaux, Dick & Kjelstrup, Signe & Christian Öttinger, Hans, 2006. "On a possible difference between the barycentric velocity and the velocity that gives translational momentum in fluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 177-187.
    4. Brenner, Howard, 2006. "Fluid mechanics revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 190-224.
    5. Brenner, Howard, 2005. "Navier–Stokes revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(1), pages 60-132.
    6. Brenner, Howard & Bielenberg, James R., 2005. "A continuum approach to phoretic motions: Thermophoresis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 251-273.
    7. Brenner, Howard, 2009. "Bi-velocity hydrodynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3391-3398.
    8. Brenner, Howard, 2011. "Steady-state heat conduction in quiescent fluids: Incompleteness of the Navier–Stokes–Fourier equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3216-3244.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:4:p:558-566. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.