IDEAS home Printed from
   My bibliography  Save this article

Pattern formation in a predator–prey model with spatial effect


  • Xue, Lin


In this paper, spatial dynamics in the Beddington–DeAngelis predator–prey model with self-diffusion and cross-diffusion is investigated. We analyze the linear stability and obtain the condition of Turing instability of this model. Moreover, we deduce the amplitude equations and determine the stability of different patterns. Numerical simulations show that this system exhibits complex dynamical behaviors. In the Turing space, we find three types of typical patterns. One is the coexistence of hexagon patterns and stripe patterns. The other two are hexagon patterns of different types. The obtained results well enrich the finding in predator–prey models with Beddington–DeAngelis functional response.

Suggested Citation

  • Xue, Lin, 2012. "Pattern formation in a predator–prey model with spatial effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5987-5996.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:5987-5996
    DOI: 10.1016/j.physa.2012.06.029

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:apmaco:v:326:y:2018:i:c:p:141-158 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:5987-5996. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.