IDEAS home Printed from
   My bibliography  Save this article

Analysis of inverse stochastic resonance and the long-term firing of Hodgkin–Huxley neurons with Gaussian white noise


  • Tuckwell, Henry C.
  • Jost, Jürgen


In order to explain the occurrence of a minimum in firing rate which occurs for certain mean input levels μ as noise level σ increases (inverse stochastic resonance, ISR) in Hodgkin–Huxley (HH) systems, we analyze the underlying transitions from a stable equilibrium point to limit cycle and vice-versa. For a value of μ at which ISR is pronounced, properties of the corresponding stable equilibrium point are found. A linearized approximation around this point has oscillatory solutions from whose maxima spikes tend to occur. A one dimensional diffusion is also constructed for small noise. Properties of the basin of attraction of the limit cycle (spike) are investigated heuristically. Long term trials of duration 500000 ms are carried out for values of σ from 0 to 2.0. The graph of mean spike count versus σ is divided into 4 regions R1,…,R4, where R3 contains the minimum associated with ISR. In R1 transitions to the basin of attraction of the rest point are not observed until a small critical value of σ=σc1 is reached, at the beginning of R2. The sudden decline in firing rate when σ is just greater than σc1 implies that there is only a small range of noise levels 0<σ<σc1 where repetitive spiking is safe from annihilation by noise. The firing rate remains small throughout R3. At a larger critical value σ=σc2 which signals the beginning of R4, the probability of transitions from the basin of attraction of the equilibrium point to that of the limit cycle apparently becomes greater than zero and the spike rate thereafter increases with increasing σ. The quantitative scheme underlying the ISR curve is outlined in terms of the properties of exit time random variables. In the final subsection, several statistical properties of the main random variables associated with long term spiking activity are given, including distributions of exit times from the two relevant basins of attraction and the interspike interval.

Suggested Citation

  • Tuckwell, Henry C. & Jost, Jürgen, 2012. "Analysis of inverse stochastic resonance and the long-term firing of Hodgkin–Huxley neurons with Gaussian white noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5311-5325.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5311-5325
    DOI: 10.1016/j.physa.2012.06.019

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. M. Ozer & L. J. Graham, 2008. "Impact of network activity on noise delayed spiking for a Hodgkin-Huxley model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(4), pages 499-503, February.
    2. Tuckwell, Henry C. & Jost, Jürgen, 2009. "Moment analysis of the Hodgkin–Huxley system with additive noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4115-4125.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:phsmap:v:486:y:2017:i:c:p:144-160 is not listed on IDEAS
    2. Zhou, Bingchang & McDonnell, Mark D., 2015. "Optimising threshold levels for information transmission in binary threshold networks: Independent multiplicative noise on each threshold," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 659-667.
    3. Yu, Haitao & Galán, Roberto F. & Wang, Jiang & Cao, Yibin & Liu, Jing, 2017. "Stochastic resonance, coherence resonance, and spike timing reliability of Hodgkin–Huxley neurons with ion-channel noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 263-275.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5311-5325. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.