IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v365y2006i1p50-56.html
   My bibliography  Save this article

A note on bounded entropies

Author

Listed:
  • Amblard, Pierre-Olivier
  • Vignat, Christophe

Abstract

The aim of the paper is to study the link between non-additivity of some entropies and their boundedness. We propose an axiomatic construction of the entropy relying on the fact that entropy belongs to a group isomorphic to the usual additive group. This allows to show that the entropies that are additive with respect to the addition of the group for independent random variables are nonlinear transforms of the Rényi entropies, including the particular case of the Shannon entropy. As a particular example, we study as a group a bounded interval in which the addition is a generalization of the addition of velocities in special relativity. We show that Tsallis–Havrda–Charvat entropy is included in the family of entropies we define. Finally, a link is made between the approach developed in the paper and the theory of deformed logarithms.

Suggested Citation

  • Amblard, Pierre-Olivier & Vignat, Christophe, 2006. "A note on bounded entropies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(1), pages 50-56.
  • Handle: RePEc:eee:phsmap:v:365:y:2006:i:1:p:50-56
    DOI: 10.1016/j.physa.2006.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106000409
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naudts, Jan, 2004. "Generalized thermostatistics based on deformed exponential and logarithmic functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 32-40.
    2. Naudts, Jan, 2002. "Deformed exponentials and logarithms in generalized thermostatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 323-334.
    3. Kaniadakis, G., 2001. "Non-linear kinetics underlying generalized statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 296(3), pages 405-425.
    4. Kaniadakis, G. & Lissia, M. & Scarfone, A.M., 2004. "Deformed logarithms and entropies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 41-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilić, Velimir M. & Stanković, Miomir S., 2014. "A unified characterization of generalized information and certainty measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 229-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:365:y:2006:i:1:p:50-56. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.